Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA.
Department of Medicine, Division of Hematology, Mayo Clinic, Rochester, Minnesota, USA.
Med Phys. 2022 Oct;49(10):6346-6358. doi: 10.1002/mp.15934. Epub 2022 Aug 28.
Dual-energy CT with virtual noncalcium (VNCa) images allows the evaluation of focal intramedullary bone marrow involvement in patients with multiple myeloma. However, current commercial VNCa techniques suffer from excessive image noise and artifacts due to material decomposition used in synthesizing VNCa images.
In this work, we aim to improve VNCa image quality for the assessment of focal multiple myeloma, using an Artificial intelligence based Generalizable Algorithm for mulTi-Energy CT (AGATE) method.
AGATE method used a custom dual-task convolutional neural network (CNN) that concurrently carries out material classification and quantification. The material classification task provided an auxiliary regularization to the material quantification task. CNN parameters were optimized using custom loss functions that involved cross-entropy, physics-informed constraints, structural redundancy in spectral and material images, and texture information in spectral images. For training data, CT phantoms (diameters 30 to 45 cm) with tissue-mimicking inserts were scanned on a third generation dual-source CT system. Scans were performed at routine dose and half of the routine dose. Small image patches (i.e., 40 × 40 pixels) of tissue-mimicking inserts with known basis material densities were extracted for training samples. Numerically simulated insert materials with various shapes increased diversity of training samples. Generalizability of AGATE was evaluated using CT images from phantoms and patients. In phantoms, material decomposition accuracy was estimated using mean-absolute-percent-error (MAPE), using physical inserts that were not used during the training. Noise power spectrum (NPS) and modulation transfer function (MTF) were compared across phantom sizes and radiation dose levels. Five patients with multiple myeloma underwent dual-energy CT, with VNCa images generated using a commercial method and AGATE. Two fellowship-trained musculoskeletal radiologists reviewed the VNCa images (commercial and AGATE) side-by-side using a dual-monitor display, blinded to VNCa type, rating the image quality for focal multiple myeloma lesion visualization using a 5-level Likert comparison scale (-2 = worse visualization and diagnostic confidence, -1 = worse visualization but equivalent diagnostic confidence, 0 = equivalent visualization and diagnostic confidence, 1 = improved visualization but equivalent diagnostic confidence, 2 = improved visualization and diagnostic confidence). A post hoc assignment of comparison ratings was performed to rank AGATE images in comparison to commercial ones.
AGATE demonstrated consistent material quantification accuracy across phantom sizes and radiation dose levels, with MAPE ranging from 0.7% to 4.4% across all testing materials. Compared to commercial VNCa images, the AGATE-synthesized VNCa images yielded considerably lower image noise (50-77% noise reduction) without compromising noise texture or spatial resolution across different phantom sizes and two radiation doses. AGATE VNCa images had markedly reduced area under NPS curves and maintained NPS peak frequency (0.7 lp/cm to 1.0 lp/cm), with similar MTF curves (50% MTF at 3.0 lp/cm). In patients, AGATE demonstrated reduced image noise and artifacts with improved delineation of focal multiple myeloma lesions (all readers comparison scores indicating improved overall diagnostic image quality [scores 1 or 2]).
AGATE demonstrated reduced noise and artifacts in VNCa images and ability to improve visualization of bone marrow lesions for assessing multiple myeloma.
双能 CT 虚拟非钙(VNCa)图像可评估多发性骨髓瘤患者的局灶性骨髓腔内受累情况。然而,当前的商业 VNCa 技术由于在合成 VNCa 图像时使用材料分解,因此存在过多的图像噪声和伪影。
本研究旨在使用基于人工智能的多能量 CT 通用算法(AGATE)来改善 VNCa 图像质量,从而评估局灶性多发性骨髓瘤。
AGATE 方法使用了一个定制的双任务卷积神经网络(CNN),该网络同时进行材料分类和定量。材料分类任务为材料定量任务提供了辅助正则化。使用自定义损失函数优化 CNN 参数,该函数涉及交叉熵、物理约束、光谱和材料图像中的结构冗余以及光谱图像中的纹理信息。对于训练数据,在第三代双源 CT 系统上扫描了直径为 30 至 45 厘米的具有组织模拟插入物的 CT 体模。以常规剂量和常规剂量的一半进行扫描。从小的组织模拟插入物(即 40×40 像素)中提取已知基础材料密度的图像补丁作为训练样本。使用具有各种形状的数值模拟插入材料增加了训练样本的多样性。AGATE 的泛化能力通过体模和患者的 CT 图像进行评估。在体模中,使用未在训练中使用的物理插入物,使用平均绝对百分比误差(MAPE)来估计材料分解的准确性。比较了不同体模尺寸和辐射剂量水平的噪声功率谱(NPS)和调制传递函数(MTF)。五名多发性骨髓瘤患者接受了双能 CT 检查,使用商业方法和 AGATE 生成了 VNCa 图像。两名具有肌肉骨骼放射学专业知识的研究员使用双显示器并排查看商业和 AGATE 的 VNCa 图像,对 VNCa 类型进行盲法评估,使用 5 级李克特比较量表(-2=更差的可视化和诊断置信度,-1=更差的可视化但等效诊断置信度,0=等效可视化和诊断置信度,1=改善的可视化但等效诊断置信度,2=改善的可视化和诊断置信度)对多发性骨髓瘤病变的局灶性可视化进行评分。对 AGATE 图像进行了事后比较评分,以将其与商业图像进行比较。
AGATE 在不同体模尺寸和辐射剂量水平下均表现出一致的材料定量准确性,所有测试材料的 MAPE 范围为 0.7%至 4.4%。与商业 VNCa 图像相比,AGATE 合成的 VNCa 图像的噪声降低了 50%至 77%,同时在不同体模尺寸和两种辐射剂量下,噪声纹理和空间分辨率均未受到影响。AGATE VNCa 图像的 NPS 曲线下面积明显减少,并保持 NPS 峰值频率(0.7 lp/cm 至 1.0 lp/cm),MTF 曲线相似(3.0 lp/cm 时的 50% MTF)。在患者中,AGATE 降低了图像噪声和伪影,改善了多发性骨髓瘤病灶的描绘(所有读者的比较评分均表明整体诊断图像质量有所提高[评分 1 或 2])。
AGATE 降低了 VNCa 图像中的噪声和伪影,并提高了骨髓病变的可视化能力,从而有助于评估多发性骨髓瘤。