Suppr超能文献

通过微波辅助合成在石墨烯上生长的游离二硫化钼纳米花作为高效的析氢反应非贵金属电催化剂。

Free MoS2 Nanoflowers Grown on Graphene by Microwave-Assisted Synthesis as Highly Efficient Non-Noble-Metal Electrocatalysts for the Hydrogen Evolution Reaction.

作者信息

Cao Jiamu, Zhang Xuelin, Zhang Yufeng, Zhou Jing, Chen Yinuo, Liu Xiaowei

机构信息

MEMS Center, School of Astronautics, Harbin Institute of Technology, Harbin, 150001, P. R. China.

School of Electronics and Information Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China.

出版信息

PLoS One. 2016 Aug 24;11(8):e0161374. doi: 10.1371/journal.pone.0161374. eCollection 2016.

Abstract

Advanced approaches to preparing non-noble-metal electrocatalysts for the hydrogen evolution reaction (HER) are considered to be a significant breakthrough in promoting the exploration of renewable resources. In this work, a hybrid material of MoS2 nanoflowers (NFs) on reduced graphene oxide (rGO) was synthesized as a HER catalyst via an environmentally friendly, efficient approach that is also suitable for mass production. Small-sized MoS2 NFs with a diameter of ca. 190 nm and an abundance of exposed edges were prepared by a hydrothermal method and were subsequently supported on rGO by microwave-assisted synthesis. The results show that MoS2 NFs were distributed uniformly on the remarkably reduced GO and preserved the outstanding original structural features perfectly. Electrochemical tests show that the as-prepared hybrid material exhibited excellent HER activity, with a small Tafel slope of 80 mV/decade and a low overpotential of 170 mV.

摘要

制备用于析氢反应(HER)的非贵金属电催化剂的先进方法被认为是促进可再生资源探索的一项重大突破。在这项工作中,通过一种环保、高效且适合大规模生产的方法,合成了一种还原氧化石墨烯(rGO)上负载二硫化钼(MoS2)纳米花(NFs)的混合材料作为HER催化剂。通过水热法制备了直径约为190 nm且具有大量暴露边缘的小尺寸MoS2 NFs,随后通过微波辅助合成将其负载在rGO上。结果表明,MoS2 NFs均匀分布在显著还原的氧化石墨烯上,并完美保留了出色的原始结构特征。电化学测试表明,所制备的混合材料表现出优异的HER活性,塔菲尔斜率小至80 mV/decade,过电位低至170 mV。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b151/4996486/2abc6b5af1f3/pone.0161374.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验