Suppr超能文献

分析 Cas9/gRNA 双链断裂在人 CFTR 基因中的基因修复途径。

Analysis of gene repair tracts from Cas9/gRNA double-stranded breaks in the human CFTR gene.

机构信息

Department of Physiology, University College Cork, Cork, Ireland.

Department of Microbiology, University College Cork, Cork, Ireland.

出版信息

Sci Rep. 2016 Aug 25;6:32230. doi: 10.1038/srep32230.

Abstract

To maximise the efficiency of template-dependent gene editing, most studies describe programmable and/or RNA-guided endonucleases that make a double-stranded break at, or close to, the target sequence to be modified. The rationale for this design strategy is that most gene repair tracts will be very short. Here, we describe a CRISPR Cas9/gRNA selection-free strategy which uses deep sequencing to characterise repair tracts from a donor plasmid containing seven nucleotide differences across a 216 bp target region in the human CFTR gene. We found that 90% of the template-dependent repair tracts were >100 bp in length with equal numbers of uni-directional and bi-directional repair tracts. The occurrence of long repair tracts suggests that a single gRNA could be used with variants of the same template to create or correct specific mutations within a 200 bp range, the size of ~80% of human exons. The selection-free strategy used here also allowed detection of non-homologous end joining events in many of the homology-directed repair tracts. This indicates a need to modify the donor, possibly by silent changes in the PAM sequence, to prevent creation of a second double-stranded break in an allele that has already been correctly edited by homology-directed repair.

摘要

为了最大限度地提高模板依赖性基因编辑的效率,大多数研究都描述了可编程和/或 RNA 指导的内切酶,它们在要修饰的目标序列处或附近产生双链断裂。这种设计策略的基本原理是,大多数基因修复片段都非常短。在这里,我们描述了一种 CRISPR Cas9/gRNA 无选择策略,该策略使用深度测序来描述来自包含七个核苷酸差异的供体质粒的修复片段,该质粒跨越人类 CFTR 基因中的 216 bp 目标区域。我们发现,90%的模板依赖性修复片段长度>100bp,单向和双向修复片段数量相等。长修复片段的出现表明,单个 gRNA 可以与相同模板的变体一起使用,在 200bp 范围内创建或纠正特定突变,该范围大小约为 80%的人类外显子。这里使用的无选择策略还允许在许多同源定向修复的修复片段中检测到非同源末端连接事件。这表明需要对供体进行修饰,可能通过 PAM 序列中的沉默变化来防止在已经通过同源定向修复正确编辑的等位基因中产生第二个双链断裂。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca16/4997560/44e4d2c4ec40/srep32230-f1.jpg

相似文献

2
Cas9/gRNA targeted excision of cystic fibrosis-causing deep-intronic splicing mutations restores normal splicing of CFTR mRNA.
PLoS One. 2017 Sep 1;12(9):e0184009. doi: 10.1371/journal.pone.0184009. eCollection 2017.
3
In trans paired nicking triggers seamless genome editing without double-stranded DNA cutting.
Nat Commun. 2017 Sep 22;8(1):657. doi: 10.1038/s41467-017-00687-1.
4
Various repair events following CRISPR/Cas9-based mutational correction of an infertility-related mutation in mouse embryos.
J Assist Reprod Genet. 2024 Jun;41(6):1605-1617. doi: 10.1007/s10815-024-03095-9. Epub 2024 Apr 1.
5
Comparison of Cas9 and Cas12a CRISPR editing methods to correct the W1282X-CFTR mutation.
J Cyst Fibros. 2022 Jan;21(1):181-187. doi: 10.1016/j.jcf.2021.05.014. Epub 2021 Jun 5.
6
Validation of a CRISPR-Mediated CFTR Correction Strategy for Preclinical Translation in Pigs.
Hum Gene Ther. 2019 Sep;30(9):1101-1116. doi: 10.1089/hum.2019.074. Epub 2019 Jun 18.
7
Efficient introduction of specific homozygous and heterozygous mutations using CRISPR/Cas9.
Nature. 2016 May 5;533(7601):125-9. doi: 10.1038/nature17664. Epub 2016 Apr 27.
8
Development of gene editing strategies for human β-globin (HBB) gene mutations.
Gene. 2020 Apr 15;734:144398. doi: 10.1016/j.gene.2020.144398. Epub 2020 Jan 24.
9
Precision genome editing in the CRISPR era.
Biochem Cell Biol. 2017 Apr;95(2):187-201. doi: 10.1139/bcb-2016-0137. Epub 2016 Sep 29.
10
Baculovirus-based genome editing in primary cells.
Plasmid. 2017 Mar;90:5-9. doi: 10.1016/j.plasmid.2017.01.003. Epub 2017 Jan 22.

引用本文的文献

1
Prime editing functionally corrects cystic fibrosis-causing CFTR mutations in human organoids and airway epithelial cells.
Cell Rep Med. 2024 May 21;5(5):101544. doi: 10.1016/j.xcrm.2024.101544. Epub 2024 May 1.
2
Molecular and functional correction of a deep intronic splicing mutation in by CRISPR-Cas9 gene editing.
Mol Ther Methods Clin Dev. 2023 Oct 18;31:101140. doi: 10.1016/j.omtm.2023.101140. eCollection 2023 Dec 14.
3
Functional restoration of a CFTR splicing mutation through RNA delivery of CRISPR adenine base editor.
Mol Ther. 2023 Jun 7;31(6):1647-1660. doi: 10.1016/j.ymthe.2023.03.004. Epub 2023 Mar 9.
4
The origin of unwanted editing byproducts in gene editing.
Acta Biochim Biophys Sin (Shanghai). 2022 May 25;54(6):767-781. doi: 10.3724/abbs.2022056.
5
Functional correction of CFTR mutations in human airway epithelial cells using adenine base editors.
Nucleic Acids Res. 2021 Oct 11;49(18):10558-10572. doi: 10.1093/nar/gkab788.
6
Gene-specific MicroRNA antagonism protects against HIV Tat and TGF-β-mediated suppression of CFTR mRNA and function.
Biomed Pharmacother. 2021 Oct;142:112090. doi: 10.1016/j.biopha.2021.112090. Epub 2021 Aug 27.
7
On the Corner of Models and Cure: Gene Editing in Cystic Fibrosis.
Front Pharmacol. 2021 Apr 27;12:662110. doi: 10.3389/fphar.2021.662110. eCollection 2021.
10
P.F508del editing in cells from cystic fibrosis patients.
PLoS One. 2020 Nov 11;15(11):e0242094. doi: 10.1371/journal.pone.0242094. eCollection 2020.

本文引用的文献

1
Impact of gene editing on the study of cystic fibrosis.
Hum Genet. 2016 Sep;135(9):983-92. doi: 10.1007/s00439-016-1693-3. Epub 2016 Jun 21.
2
Mechanism and regulation of DNA end resection in eukaryotes.
Crit Rev Biochem Mol Biol. 2016 May-Jun;51(3):195-212. doi: 10.3109/10409238.2016.1172552. Epub 2016 Apr 20.
3
Functional Gene Correction for Cystic Fibrosis in Lung Epithelial Cells Generated from Patient iPSCs.
Cell Rep. 2015 Sep 1;12(9):1385-90. doi: 10.1016/j.celrep.2015.07.062. Epub 2015 Aug 20.
4
Genome editing technologies: defining a path to clinic.
Mol Ther. 2015 May;23(5):796-806. doi: 10.1038/mt.2015.54.
5
In vivo genome editing using Staphylococcus aureus Cas9.
Nature. 2015 Apr 9;520(7546):186-91. doi: 10.1038/nature14299. Epub 2015 Apr 1.
6
Targeted correction and restored function of the CFTR gene in cystic fibrosis induced pluripotent stem cells.
Stem Cell Reports. 2015 Apr 14;4(4):569-77. doi: 10.1016/j.stemcr.2015.02.005. Epub 2015 Mar 12.
7
Mismatch repair during homologous and homeologous recombination.
Cold Spring Harb Perspect Biol. 2015 Mar 2;7(3):a022657. doi: 10.1101/cshperspect.a022657.
8
A genome-wide analysis of Cas9 binding specificity using ChIP-seq and targeted sequence capture.
Nucleic Acids Res. 2015 Mar 31;43(6):3389-404. doi: 10.1093/nar/gkv137. Epub 2015 Feb 20.
9
Multi-kilobase homozygous targeted gene replacement in human induced pluripotent stem cells.
Nucleic Acids Res. 2015 Feb 18;43(3):e21. doi: 10.1093/nar/gku1246. Epub 2014 Nov 20.
10
Donor plasmid design for codon and single base genome editing using zinc finger nucleases.
Methods Mol Biol. 2015;1239:219-29. doi: 10.1007/978-1-4939-1862-1_11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验