Suppr超能文献

人诱导多能干细胞中的多千碱基纯合靶向基因替换

Multi-kilobase homozygous targeted gene replacement in human induced pluripotent stem cells.

作者信息

Byrne Susan M, Ortiz Luis, Mali Prashant, Aach John, Church George M

机构信息

Department of Genetics, Harvard Medical School, Boston, MA 02115, USA

Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.

出版信息

Nucleic Acids Res. 2015 Feb 18;43(3):e21. doi: 10.1093/nar/gku1246. Epub 2014 Nov 20.

Abstract

Sequence-specific nucleases such as TALEN and the CRISPR/Cas9 system have so far been used to disrupt, correct or insert transgenes at precise locations in mammalian genomes. We demonstrate efficient 'knock-in' targeted replacement of multi-kilobase genes in human induced pluripotent stem cells (iPSC). Using a model system replacing endogenous human genes with their mouse counterpart, we performed a comprehensive study of targeting vector design parameters for homologous recombination. A 2.7 kilobase (kb) homozygous gene replacement was achieved in up to 11% of iPSC without selection. The optimal homology arm length was around 2 kb, with homology length being especially critical on the arm not adjacent to the cut site. Homologous sequence inside the cut sites was detrimental to targeting efficiency, consistent with a synthesis-dependent strand annealing (SDSA) mechanism. Using two nuclease sites, we observed a high degree of gene excisions and inversions, which sometimes occurred more frequently than indel mutations. While homozygous deletions of 86 kb were achieved with up to 8% frequency, deletion frequencies were not solely a function of nuclease activity and deletion size. Our results analyzing the optimal parameters for targeting vector design will inform future gene targeting efforts involving multi-kilobase gene segments, particularly in human iPSC.

摘要

到目前为止,诸如转录激活因子样效应物核酸酶(TALEN)和CRISPR/Cas9系统等序列特异性核酸酶已被用于在哺乳动物基因组的精确位置破坏、校正或插入转基因。我们展示了在人诱导多能干细胞(iPSC)中高效的多千碱基基因“敲入”靶向替换。使用一个用小鼠对应基因替换内源性人类基因的模型系统,我们对同源重组的靶向载体设计参数进行了全面研究。在不进行选择的情况下,高达11%的iPSC实现了2.7千碱基(kb)的纯合基因替换。最佳同源臂长度约为2 kb,同源长度在不与切割位点相邻的臂上尤为关键。切割位点内部的同源序列对靶向效率有害,这与合成依赖链退火(SDSA)机制一致。使用两个核酸酶位点,我们观察到高度的基因切除和倒位,其有时比插入缺失突变更频繁地发生。虽然高达8%的频率实现了86 kb的纯合缺失,但缺失频率并不完全是核酸酶活性和缺失大小的函数。我们分析靶向载体设计最佳参数的结果将为未来涉及多千碱基基因片段的基因靶向研究提供参考,特别是在人iPSC中。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4970/4330342/85c710d271c6/gku1246fig1.jpg

相似文献

1
Multi-kilobase homozygous targeted gene replacement in human induced pluripotent stem cells.
Nucleic Acids Res. 2015 Feb 18;43(3):e21. doi: 10.1093/nar/gku1246. Epub 2014 Nov 20.
2
Crispr-mediated Gene Targeting of Human Induced Pluripotent Stem Cells.
Curr Protoc Stem Cell Biol. 2015;35(Suppl 35):5A.8.1-5A.8.22. doi: 10.1002/9780470151808.sc05a08s35. Epub 2015 Nov 4.
3
Precise gene modification mediated by TALEN and single-stranded oligodeoxynucleotides in human cells.
PLoS One. 2014 Apr 1;9(4):e93575. doi: 10.1371/journal.pone.0093575. eCollection 2014.
4
Genome editing in human stem cells.
Methods Enzymol. 2014;546:119-38. doi: 10.1016/B978-0-12-801185-0.00006-4.
5
Human Induced Pluripotent Stem Cell NEUROG2 Dual Knockin Reporter Lines Generated by the CRISPR/Cas9 System.
Stem Cells Dev. 2015 Dec 15;24(24):2925-42. doi: 10.1089/scd.2015.0131. Epub 2015 Nov 5.
6
Silencing of end-joining repair for efficient site-specific gene insertion after TALEN/CRISPR mutagenesis in Aedes aegypti.
Proc Natl Acad Sci U S A. 2015 Mar 31;112(13):4038-43. doi: 10.1073/pnas.1502370112. Epub 2015 Mar 16.
8
CRISPR Interference Efficiently Induces Specific and Reversible Gene Silencing in Human iPSCs.
Cell Stem Cell. 2016 Apr 7;18(4):541-53. doi: 10.1016/j.stem.2016.01.022. Epub 2016 Mar 10.
10
Utilization of TALEN and CRISPR/Cas9 technologies for gene targeting and modification.
Exp Biol Med (Maywood). 2015 Aug;240(8):1065-70. doi: 10.1177/1535370215584932. Epub 2015 May 7.

引用本文的文献

1
KDM6A facilitates Xist upregulation at the onset of X inactivation.
Biol Sex Differ. 2025 Jan 3;16(1):1. doi: 10.1186/s13293-024-00683-3.
2
Making gene editing accessible in resource limited environments: recommendations to guide a first-time user.
Front Genome Ed. 2024 Sep 25;6:1464531. doi: 10.3389/fgeed.2024.1464531. eCollection 2024.
3
A structural peculiarity of Antarctic fish IgM drives the generation of an engineered mAb by CRISPR/Cas9.
Front Bioeng Biotechnol. 2024 Jul 25;12:1315633. doi: 10.3389/fbioe.2024.1315633. eCollection 2024.
4
In vivo affinity maturation of mouse B cells reprogrammed to express human antibodies.
Nat Biomed Eng. 2024 Apr;8(4):361-379. doi: 10.1038/s41551-024-01179-6. Epub 2024 Mar 14.
5
Recent advances in CRISPR-Cas9-based genome insertion technologies.
Mol Ther Nucleic Acids. 2024 Feb 5;35(1):102138. doi: 10.1016/j.omtn.2024.102138. eCollection 2024 Mar 12.
6
Outlook on genome editing application to cattle.
J Vet Sci. 2024 Jan;25(1):e10. doi: 10.4142/jvs.23133.
7
affinity maturation of murine B cells reprogrammed to express human antibodies.
bioRxiv. 2023 Oct 23:2023.10.20.563154. doi: 10.1101/2023.10.20.563154.
8
Advances in CRISPR/Cas gene therapy for inborn errors of immunity.
Front Immunol. 2023 Mar 27;14:1111777. doi: 10.3389/fimmu.2023.1111777. eCollection 2023.
9
STRAIGHT-IN enables high-throughput targeting of large DNA payloads in human pluripotent stem cells.
Cell Rep Methods. 2022 Sep 22;2(10):100300. doi: 10.1016/j.crmeth.2022.100300. eCollection 2022 Oct 24.
10
Precise gene replacement in plants through CRISPR/Cas genome editing technology: current status and future perspectives.
aBIOTECH. 2019 Nov 7;1(1):58-73. doi: 10.1007/s42994-019-00009-7. eCollection 2020 Jan.

本文引用的文献

1
Genome editing assessment using CRISPR Genome Analyzer (CRISPR-GA).
Bioinformatics. 2014 Oct 15;30(20):2968-70. doi: 10.1093/bioinformatics/btu427. Epub 2014 Jul 1.
4
Genome-wide analysis reveals characteristics of off-target sites bound by the Cas9 endonuclease.
Nat Biotechnol. 2014 Jul;32(7):677-83. doi: 10.1038/nbt.2916. Epub 2014 May 18.
5
Genome-wide binding of the CRISPR endonuclease Cas9 in mammalian cells.
Nat Biotechnol. 2014 Jul;32(7):670-6. doi: 10.1038/nbt.2889. Epub 2014 Apr 20.
6
The mechanism of gene targeting in human somatic cells.
PLoS Genet. 2014 Apr 3;10(4):e1004251. doi: 10.1371/journal.pgen.1004251. eCollection 2014 Apr.
7
Is non-homologous end-joining really an inherently error-prone process?
PLoS Genet. 2014 Jan;10(1):e1004086. doi: 10.1371/journal.pgen.1004086. Epub 2014 Jan 16.
8
CasOT: a genome-wide Cas9/gRNA off-target searching tool.
Bioinformatics. 2014 Apr 15;30(8):1180-1182. doi: 10.1093/bioinformatics/btt764. Epub 2014 Jan 2.
9
Genetic screens in human cells using the CRISPR-Cas9 system.
Science. 2014 Jan 3;343(6166):80-4. doi: 10.1126/science.1246981. Epub 2013 Dec 12.
10
An erythroid enhancer of BCL11A subject to genetic variation determines fetal hemoglobin level.
Science. 2013 Oct 11;342(6155):253-7. doi: 10.1126/science.1242088.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验