Suppr超能文献

大规模基于人群的前瞻性观察队列的高质量标准:实例

High quality standards for a large-scale prospective population-based observational cohort: Constances.

作者信息

Ruiz Fabrice, Goldberg Marcel, Lemonnier Sylvie, Ozguler Anna, Boos Evelyne, Brigand Alain, Giraud Violaine, Perez Thierry, Roche Nicolas, Zins Marie

机构信息

CLINSEARCH, 110 Avenue Pierre Brossolette, 92240, Malakoff, France.

UMS 011 Inserm - UVSQ « Cohortes épidémiologiques en population », 16 avenue Paul Vaillant Couturier, 94 807, Villejuif, France.

出版信息

BMC Public Health. 2016 Aug 25;16(1):877. doi: 10.1186/s12889-016-3439-5.

Abstract

BACKGROUND

Long-term multicentre studies are subject to numerous factors that may affect the integrity of their conclusions. Quality control and standardization of data collection are crucial to minimise the biases induced by these factors. Nevertheless, tools implemented to manage biases are rarely described in publications about population-based cohorts. This report aims to describe the processes implemented to control biases in the Constances cohort taking lung function results as an example.

METHODS

Constances is a general-purpose population-based cohort of 200,000 participants. Volunteers attend physical examinations at baseline and then every 5 years at selected study sites. Medical device specifications and measurement methods have to comply with Standard Operating Procedures developed by experts. Protocol deviations are assessed by on-site inspections and database controls. In February 2016, more than 94,000 participants yielding around 30 million readings from physical exams, had been covered by our quality program.

RESULTS

Participating centres accepted to revise their practices in accordance with the study research specifications. Distributors of medical devices were asked to comply with international guidelines and Constances requirements. Close monitoring enhanced the quality of measurements and recordings of the physical exams. Regarding lung function testing, spirometry acceptability rates per operator doubled in some sites within a few months and global repeatability reached 96.7 % for 29,772 acceptable maneuvers.

CONCLUSIONS

Despite Constances volunteers being followed in multiple sites with heterogeneous materials, the investment of significant resources to set up and maintain a continuous quality management process has proved effective in preventing drifts and improving accuracy of collected data.

摘要

背景

长期多中心研究受到众多可能影响其结论完整性的因素影响。数据收集的质量控制和标准化对于将这些因素引起的偏差降至最低至关重要。然而,在基于人群队列的出版物中,很少描述用于管理偏差的工具。本报告旨在以肺功能结果为例,描述在康斯坦茨队列中为控制偏差而实施的过程。

方法

康斯坦茨是一个基于人群的通用队列,有20万名参与者。志愿者在基线时参加体检,然后每5年在选定的研究地点进行一次体检。医疗设备规格和测量方法必须符合专家制定的标准操作程序。通过现场检查和数据库控制来评估方案偏差。到2016年2月,我们的质量计划已覆盖了94,000多名参与者,他们的体检产生了约3000万个读数。

结果

参与中心同意根据研究规范修改其做法。要求医疗设备经销商遵守国际指南和康斯坦茨的要求。密切监测提高了体检测量和记录的质量。关于肺功能测试,在几个月内,一些站点每个操作员的肺活量测定可接受率翻了一番,对于29,772次可接受的操作,总体重复性达到了96.7%。

结论

尽管康斯坦茨队列的志愿者在多个地点使用不同的设备进行随访,但投入大量资源建立和维持持续质量管理过程已被证明在防止数据偏差和提高所收集数据的准确性方面是有效的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af60/4997774/50fe6fae530d/12889_2016_3439_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验