Suppr超能文献

基于云的无服务器计算可实现核医学成像的加速蒙特卡罗模拟。

Cloud-based serverless computing enables accelerated monte carlo simulations for nuclear medicine imaging.

机构信息

Department of Biomedical Engineering, University of California Davis, Davis, CA, United States of America.

Department of Radiology, University of California Davis, Davis, CA, United States of America.

出版信息

Biomed Phys Eng Express. 2024 Jun 25;10(4). doi: 10.1088/2057-1976/ad5847.

Abstract

This study investigates the potential of cloud-based serverless computing to accelerate Monte Carlo (MC) simulations for nuclear medicine imaging tasks. MC simulations can pose a high computational burden-even when executed on modern multi-core computing servers. Cloud computing allows simulation tasks to be highly parallelized and considerably accelerated.We investigate the computational performance of a cloud-based serverless MC simulation of radioactive decays for positron emission tomography imaging using Amazon Web Service (AWS) Lambda serverless computing platform for the first time in scientific literature. We provide a comparison of the computational performance of AWS to a modern on-premises multi-thread reconstruction server by measuring the execution times of the processes using between105and2·1010simulated decays. We deployed two popular MC simulation frameworks-SimSET and GATE-within the AWS computing environment. Containerized application images were used as a basis for an AWS Lambda function, and local (non-cloud) scripts were used to orchestrate the deployment of simulations. The task was broken down into smaller parallel runs, and launched on concurrently running AWS Lambda instances, and the results were postprocessed and downloaded via the Simple Storage Service.Our implementation of cloud-based MC simulations with SimSET outperforms local server-based computations by more than an order of magnitude. However, the GATE implementation creates more and larger output file sizes and reveals that the internet connection speed can become the primary bottleneck for data transfers. Simulating 10decays using SimSET is possible within 5 min and accrues computation costs of about $10 on AWS, whereas GATE would have to run in batches for more than 100 min at considerably higher costs.Adopting cloud-based serverless computing architecture in medical imaging research facilities can considerably improve processing times and overall workflow efficiency, with future research exploring additional enhancements through optimized configurations and computational methods.

摘要

本研究探讨了基于云的无服务器计算在加速核医学成像任务中的蒙特卡罗(MC)模拟的潜力。即使在现代多核计算服务器上执行,MC 模拟也可能带来很高的计算负担。云计算允许模拟任务高度并行化并大大加速。我们首次在科学文献中研究了基于云的无服务器 MC 放射性衰变模拟在正电子发射断层扫描成像中的计算性能,使用的是亚马逊网络服务(AWS)Lambda 无服务器计算平台。我们通过使用 10^5 到 2·10^10 个模拟衰变来测量过程的执行时间,比较了 AWS 的计算性能与现代内部部署多线程重建服务器的计算性能。我们在 AWS 计算环境中部署了两个流行的 MC 模拟框架-SimSET 和 GATE。使用容器化应用程序映像作为 AWS Lambda 函数的基础,并使用本地(非云)脚本来协调模拟的部署。任务被分解为更小的并行运行,并在并发运行的 AWS Lambda 实例上启动,结果通过简单存储服务进行后处理和下载。我们使用 SimSET 实现的基于云的 MC 模拟的性能比本地服务器计算高出一个数量级以上。然而,GATE 实现会创建更多和更大的输出文件大小,并表明互联网连接速度可能成为数据传输的主要瓶颈。使用 SimSET 模拟 10 个衰变可以在 5 分钟内完成,并且在 AWS 上产生约 10 美元的计算成本,而 GATE 则需要以更高的成本分批运行超过 100 分钟。在医学成像研究设施中采用基于云的无服务器计算架构可以大大提高处理时间和整体工作流程效率,未来的研究将通过优化配置和计算方法来探索额外的增强功能。

相似文献

1
Cloud-based serverless computing enables accelerated monte carlo simulations for nuclear medicine imaging.
Biomed Phys Eng Express. 2024 Jun 25;10(4). doi: 10.1088/2057-1976/ad5847.
3
Cost-effectiveness of using prognostic information to select women with breast cancer for adjuvant systemic therapy.
Health Technol Assess. 2006 Sep;10(34):iii-iv, ix-xi, 1-204. doi: 10.3310/hta10340.
5
Behavioral interventions to reduce risk for sexual transmission of HIV among men who have sex with men.
Cochrane Database Syst Rev. 2008 Jul 16(3):CD001230. doi: 10.1002/14651858.CD001230.pub2.
6
Home treatment for mental health problems: a systematic review.
Health Technol Assess. 2001;5(15):1-139. doi: 10.3310/hta5150.
8
Signs and symptoms to determine if a patient presenting in primary care or hospital outpatient settings has COVID-19.
Cochrane Database Syst Rev. 2022 May 20;5(5):CD013665. doi: 10.1002/14651858.CD013665.pub3.
9
Drugs for preventing postoperative nausea and vomiting in adults after general anaesthesia: a network meta-analysis.
Cochrane Database Syst Rev. 2020 Oct 19;10(10):CD012859. doi: 10.1002/14651858.CD012859.pub2.
10
Diagnostic test accuracy and cost-effectiveness of tests for codeletion of chromosomal arms 1p and 19q in people with glioma.
Cochrane Database Syst Rev. 2022 Mar 2;3(3):CD013387. doi: 10.1002/14651858.CD013387.pub2.

本文引用的文献

2
UMC-PET: a fast and flexible Monte Carlo PET simulator.
Phys Med Biol. 2024 Jan 30;69(3). doi: 10.1088/1361-6560/ad1cf9.
3
Facial Anonymization and Privacy Concerns in Total-Body PET/CT.
J Nucl Med. 2023 Aug;64(8):1304-1309. doi: 10.2967/jnumed.122.265280. Epub 2023 Jun 2.
7
Hybrid total-body pet scanners-current status and future perspectives.
Eur J Nucl Med Mol Imaging. 2022 Jan;49(2):445-459. doi: 10.1007/s00259-021-05536-4. Epub 2021 Oct 14.
10
Advanced Monte Carlo simulations of emission tomography imaging systems with GATE.
Phys Med Biol. 2021 May 14;66(10). doi: 10.1088/1361-6560/abf276.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验