Suppr超能文献

ATF6α调节人类成纤维细胞中与衰老相关的形态变化。

ATF6α regulates morphological changes associated with senescence in human fibroblasts.

作者信息

Druelle Clémentine, Drullion Claire, Deslé Julie, Martin Nathalie, Saas Laure, Cormenier Johanna, Malaquin Nicolas, Huot Ludovic, Slomianny Christian, Bouali Fatima, Vercamer Chantal, Hot David, Pourtier Albin, Chevet Eric, Abbadie Corinne, Pluquet Olivier

机构信息

Université de Lille, Institut Pasteur de Lille, CNRS UMR8161, Mechanisms of Tumourigenesis and Targeted Therapies, Lille, France.

Department of Anatomy and Neuroscience, Biosciences Institute, University College Cork, Cork, Ireland.

出版信息

Oncotarget. 2016 Oct 18;7(42):67699-67715. doi: 10.18632/oncotarget.11505.

Abstract

Cellular senescence is known as an anti-tumor barrier and is characterized by a number of determinants including cell cycle arrest, senescence associated β-galactosidase activity and secretion of pro-inflammatory mediators. Senescent cells are also subjected to enlargement, cytoskeleton-mediated shape changes and organelle alterations. However, the underlying molecular mechanisms responsible for these last changes remain still uncharacterized. Herein, we have identified the Unfolded Protein Response (UPR) as a player controlling some morphological aspects of the senescent phenotype. We show that senescent fibroblasts exhibit ER expansion and mild UPR activation, but conserve an ER stress adaptive capacity similar to that of exponentially growing cells. By genetically invalidating the three UPR sensors in senescent fibroblasts, we demonstrated that ATF6α signaling dictates senescence-associated cell shape modifications. We also show that ER expansion and increased secretion of the pro-inflammatory mediator IL6 were partly reversed by silencing ATF6α in senescent cells. Moreover, ATF6α drives the increase of senescence associated-β-galactosidase activity. Collectively, these findings unveil a novel and central role for ATF6α in the establishment of morphological features of senescence in normal human primary fibroblasts.

摘要

细胞衰老被认为是一种抗肿瘤屏障,其特征包括多个决定因素,如细胞周期停滞、衰老相关β-半乳糖苷酶活性以及促炎介质的分泌。衰老细胞还会出现细胞增大、细胞骨架介导的形态变化和细胞器改变。然而,导致这些最终变化的潜在分子机制仍未明确。在此,我们确定未折叠蛋白反应(UPR)是控制衰老表型某些形态学方面的一个因素。我们发现衰老的成纤维细胞表现出内质网扩张和轻度的UPR激活,但保留了与指数生长细胞相似的内质网应激适应能力。通过在衰老的成纤维细胞中使三种UPR传感器基因失活,我们证明ATF6α信号决定衰老相关的细胞形态改变。我们还表明,通过在衰老细胞中沉默ATF6α,内质网扩张和促炎介质白细胞介素6分泌增加的情况部分得到逆转。此外,ATF6α驱动衰老相关β-半乳糖苷酶活性的增加。总的来说,这些发现揭示了ATF6α在正常人原代成纤维细胞衰老形态特征建立中的新的核心作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a3b/5356513/ab27548dd3a5/oncotarget-07-67699-g001.jpg

相似文献

1
ATF6α regulates morphological changes associated with senescence in human fibroblasts.
Oncotarget. 2016 Oct 18;7(42):67699-67715. doi: 10.18632/oncotarget.11505.
3
Pre-malignant transformation by senescence evasion is prevented by the PERK and ATF6alpha branches of the Unfolded Protein Response.
Cancer Lett. 2018 Dec 1;438:187-196. doi: 10.1016/j.canlet.2018.09.008. Epub 2018 Sep 11.
4
The p38-activated ER stress-ATF6α axis mediates cellular senescence.
FASEB J. 2019 Feb;33(2):2422-2434. doi: 10.1096/fj.201800836R. Epub 2018 Sep 27.
7
Expression of citrate carrier gene is activated by ER stress effectors XBP1 and ATF6α, binding to an UPRE in its promoter.
Biochim Biophys Acta. 2015 Jan;1849(1):23-31. doi: 10.1016/j.bbagrm.2014.10.004. Epub 2014 Oct 27.
8
ATF6alpha optimizes long-term endoplasmic reticulum function to protect cells from chronic stress.
Dev Cell. 2007 Sep;13(3):351-64. doi: 10.1016/j.devcel.2007.07.005.
9
ATF6alpha induces XBP1-independent expansion of the endoplasmic reticulum.
J Cell Sci. 2009 May 15;122(Pt 10):1626-36. doi: 10.1242/jcs.045625.

引用本文的文献

3
A Comprehensive Multiomics Signature of Doxorubicin-Induced Cellular Senescence in the Postmenopausal Human Ovary.
Aging Cell. 2025 Aug;24(8):e70111. doi: 10.1111/acel.70111. Epub 2025 Jun 1.
4
Targeting ATF6α Attenuates UVB-Induced Senescence and Improves Skin Homeostasis by Regulating IL8 Expression.
Aging Cell. 2025 Jun;24(6):e70024. doi: 10.1111/acel.70024. Epub 2025 Apr 16.
5
Studying Cellular Senescence Using the Model Organism Drosophila melanogaster.
Methods Mol Biol. 2025;2906:281-299. doi: 10.1007/978-1-0716-4426-3_17.
6
Understanding the impact of ER stress on lung physiology.
Front Cell Dev Biol. 2024 Dec 18;12:1466997. doi: 10.3389/fcell.2024.1466997. eCollection 2024.
7
Senolytics: charting a new course or enhancing existing anti-tumor therapies?
Cell Oncol (Dordr). 2025 Apr;48(2):351-371. doi: 10.1007/s13402-024-01018-5. Epub 2024 Dec 4.
8
Mitochondria-Associated Membranes in Aging and Senescence.
Aging Dis. 2024 Aug 5;16(4):2250-2272. doi: 10.14336/AD.2024.0652.
9
Dialogue between mitochondria and endoplasmic reticulum-potential therapeutic targets for age-related cardiovascular diseases.
Front Pharmacol. 2024 Jun 13;15:1389202. doi: 10.3389/fphar.2024.1389202. eCollection 2024.
10
Endoplasmic reticulum stress-induced senescence in human lung fibroblasts.
Am J Physiol Lung Cell Mol Physiol. 2024 Jul 1;327(1):L126-L139. doi: 10.1152/ajplung.00264.2023. Epub 2024 May 21.

本文引用的文献

1
Naturally occurring p16(Ink4a)-positive cells shorten healthy lifespan.
Nature. 2016 Feb 11;530(7589):184-9. doi: 10.1038/nature16932. Epub 2016 Feb 3.
6
Cytoskeletal crosstalk: when three different personalities team up.
Curr Opin Cell Biol. 2015 Feb;32:39-47. doi: 10.1016/j.ceb.2014.10.005. Epub 2014 Nov 15.
7
Connecting the cytoskeleton to the endoplasmic reticulum and Golgi.
Curr Biol. 2014 Jul 21;24(14):R660-R672. doi: 10.1016/j.cub.2014.05.033.
8
Cellular senescence involves an intracrine prostaglandin E2 pathway in human fibroblasts.
Biochim Biophys Acta. 2013 Jul;1831(7):1217-27. doi: 10.1016/j.bbalip.2013.04.005.
10
Senescence regulation by mTOR.
Methods Mol Biol. 2013;965:15-35. doi: 10.1007/978-1-62703-239-1_2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验