Chen Walter W, Freinkman Elizaveta, Wang Tim, Birsoy Kıvanç, Sabatini David M
Whitehead Institute for Biomedical Research, Department of Biology, Massachusetts Institute of Technology, 9 Cambridge Center, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research, 77 Massachusetts Avenue, Cambridge, MA 02139, USA; Broad Institute of Harvard and Massachusetts Institute of Technology, 7 Cambridge Center, Cambridge, MA 02142, USA.
Whitehead Institute for Biomedical Research, Department of Biology, Massachusetts Institute of Technology, 9 Cambridge Center, Cambridge, MA 02142, USA.
Cell. 2016 Aug 25;166(5):1324-1337.e11. doi: 10.1016/j.cell.2016.07.040.
Mitochondria house metabolic pathways that impact most aspects of cellular physiology. While metabolite profiling by mass spectrometry is widely applied at the whole-cell level, it is not routinely possible to measure the concentrations of small molecules in mammalian organelles. We describe a method for the rapid and specific isolation of mitochondria and use it in tandem with a database of predicted mitochondrial metabolites ("MITObolome") to measure the matrix concentrations of more than 100 metabolites across various states of respiratory chain (RC) function. Disruption of the RC reveals extensive compartmentalization of mitochondrial metabolism and signatures unique to the inhibition of each RC complex. Pyruvate enables the proliferation of RC-deficient cells but has surprisingly limited effects on matrix contents. Interestingly, despite failing to restore matrix NADH/NAD balance, pyruvate does increase aspartate, likely through the exchange of matrix glutamate for cytosolic aspartate. We demonstrate the value of mitochondrial metabolite profiling and describe a strategy applicable to other organelles.
线粒体包含影响细胞生理学大多数方面的代谢途径。虽然通过质谱进行代谢物谱分析在全细胞水平上被广泛应用,但常规情况下无法测量哺乳动物细胞器中小分子的浓度。我们描述了一种快速、特异性分离线粒体的方法,并将其与预测的线粒体代谢物数据库(“MITObolome”)结合使用,以测量呼吸链(RC)功能不同状态下100多种代谢物的基质浓度。RC的破坏揭示了线粒体代谢的广泛区室化以及每个RC复合物抑制所特有的特征。丙酮酸能使RC缺陷细胞增殖,但对基质成分的影响出人意料地有限。有趣的是,尽管丙酮酸未能恢复基质NADH/NAD平衡,但它确实增加了天冬氨酸,可能是通过基质谷氨酸与胞质天冬氨酸的交换实现的。我们展示了线粒体代谢物谱分析的价值,并描述了一种适用于其他细胞器分析的策略。