Suppr超能文献

支持天冬氨酸生物合成是增殖细胞呼吸的一项基本功能。

Supporting Aspartate Biosynthesis Is an Essential Function of Respiration in Proliferating Cells.

作者信息

Sullivan Lucas B, Gui Dan Y, Hosios Aaron M, Bush Lauren N, Freinkman Elizaveta, Vander Heiden Matthew G

机构信息

The Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.

Whitehead Institute for Biomedical Research, Nine Cambridge Center, Cambridge, Massachusetts 02142, USA.

出版信息

Cell. 2015 Jul 30;162(3):552-63. doi: 10.1016/j.cell.2015.07.017.

Abstract

Mitochondrial respiration is important for cell proliferation; however, the specific metabolic requirements fulfilled by respiration to support proliferation have not been defined. Here, we show that a major role of respiration in proliferating cells is to provide electron acceptors for aspartate synthesis. This finding is consistent with the observation that cells lacking a functional respiratory chain are auxotrophic for pyruvate, which serves as an exogenous electron acceptor. Further, the pyruvate requirement can be fulfilled with an alternative electron acceptor, alpha-ketobutyrate, which provides cells neither carbon nor ATP. Alpha-ketobutyrate restores proliferation when respiration is inhibited, suggesting that an alternative electron acceptor can substitute for respiration to support proliferation. We find that electron acceptors are limiting for producing aspartate, and supplying aspartate enables proliferation of respiration deficient cells in the absence of exogenous electron acceptors. Together, these data argue a major function of respiration in proliferating cells is to support aspartate synthesis.

摘要

线粒体呼吸对于细胞增殖很重要;然而,呼吸作用为支持增殖而满足的特定代谢需求尚未明确。在此,我们表明呼吸作用在增殖细胞中的一个主要作用是为天冬氨酸合成提供电子受体。这一发现与以下观察结果一致:缺乏功能性呼吸链的细胞对丙酮酸是营养缺陷型的,丙酮酸作为一种外源电子受体。此外,丙酮酸的需求可以通过替代电子受体α-酮丁酸来满足,α-酮丁酸既不提供碳也不提供ATP。当呼吸作用受到抑制时,α-酮丁酸可恢复细胞增殖,这表明替代电子受体可以替代呼吸作用来支持细胞增殖。我们发现电子受体限制了天冬氨酸的产生,并且在没有外源电子受体的情况下,提供天冬氨酸能够使呼吸缺陷型细胞增殖。总之,这些数据表明呼吸作用在增殖细胞中的一个主要功能是支持天冬氨酸合成。

相似文献

1
Supporting Aspartate Biosynthesis Is an Essential Function of Respiration in Proliferating Cells.
Cell. 2015 Jul 30;162(3):552-63. doi: 10.1016/j.cell.2015.07.017.
3
Aerobic glycolysis: meeting the metabolic requirements of cell proliferation.
Annu Rev Cell Dev Biol. 2011;27:441-64. doi: 10.1146/annurev-cellbio-092910-154237.
5
Severe impairment of nucleotide synthesis through inhibition of mitochondrial respiration.
Nucleosides Nucleotides Nucleic Acids. 2004 Oct;23(8-9):1275-9. doi: 10.1081/NCN-200027545.
6
Asparagine couples mitochondrial respiration to ATF4 activity and tumor growth.
Cell Metab. 2021 May 4;33(5):1013-1026.e6. doi: 10.1016/j.cmet.2021.02.001. Epub 2021 Feb 19.

引用本文的文献

1
Metabolic Effects of Healing Touch During Cervical Cancer Treatment: An Exploratory Analysis.
Integr Cancer Ther. 2025 Jan-Dec;24:15347354251367793. doi: 10.1177/15347354251367793. Epub 2025 Sep 4.
2
Mitochondrial-encoded peptide MOTS-c prevents pancreatic islet cell senescence to delay diabetes.
Exp Mol Med. 2025 Aug;57(8):1861-1877. doi: 10.1038/s12276-025-01521-1. Epub 2025 Aug 25.
3
GOT2: a moonlighting enzyme at the crossroads of cancer metabolism and theranostics.
Front Immunol. 2025 Aug 6;16:1626914. doi: 10.3389/fimmu.2025.1626914. eCollection 2025.
4
The mitochondrial aspartate transporter Ucp4a regulates muscle aging and animal lifespan in Drosophila melanogaster.
PLoS One. 2025 Aug 14;20(8):e0323980. doi: 10.1371/journal.pone.0323980. eCollection 2025.
6
Neural Stem Cell-Derived Extracellular Vesicles for Advanced Neural Repair.
J Neurochem. 2025 Aug;169(8):e70170. doi: 10.1111/jnc.70170.
8
Mechanism and Structure-Guided Optimization of SLC1A1/EAAT3-Selective Inhibitors in Kidney Cancer.
bioRxiv. 2025 Jul 7:2025.07.03.663021. doi: 10.1101/2025.07.03.663021.
9
Riboflavin drives nucleotide biosynthesis and iron-sulfur metabolism to promote acute myeloid leukemia.
bioRxiv. 2025 Jun 29:2025.06.26.661633. doi: 10.1101/2025.06.26.661633.
10
What's on the menu?: metabolic constraints in the pancreatic tumor microenvironment.
J Clin Invest. 2025 Jul 15;135(14). doi: 10.1172/JCI191940.

本文引用的文献

2
Famine versus feast: understanding the metabolism of tumors in vivo.
Trends Biochem Sci. 2015 Mar;40(3):130-40. doi: 10.1016/j.tibs.2015.01.004. Epub 2015 Jan 29.
4
Pyruvate kinase isoform expression alters nucleotide synthesis to impact cell proliferation.
Mol Cell. 2015 Jan 8;57(1):95-107. doi: 10.1016/j.molcel.2014.10.027. Epub 2014 Dec 4.
5
Tracing compartmentalized NADPH metabolism in the cytosol and mitochondria of mammalian cells.
Mol Cell. 2014 Jul 17;55(2):253-63. doi: 10.1016/j.molcel.2014.05.008. Epub 2014 May 29.
6
Oxidation of alpha-ketoglutarate is required for reductive carboxylation in cancer cells with mitochondrial defects.
Cell Rep. 2014 Jun 12;7(5):1679-1690. doi: 10.1016/j.celrep.2014.04.037. Epub 2014 May 22.
7
ROS function in redox signaling and oxidative stress.
Curr Biol. 2014 May 19;24(10):R453-62. doi: 10.1016/j.cub.2014.03.034.
9
Inhibition of ATPIF1 ameliorates severe mitochondrial respiratory chain dysfunction in mammalian cells.
Cell Rep. 2014 Apr 10;7(1):27-34. doi: 10.1016/j.celrep.2014.02.046. Epub 2014 Mar 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验