Suppr超能文献

在酵母模型中,菌株构象控制跨物种朊病毒传播的特异性。

Strain conformation controls the specificity of cross-species prion transmission in the yeast model.

作者信息

Grizel Anastasia V, Rubel Aleksandr A, Chernoff Yury O

机构信息

a Laboratory of Amyloid Biology, St. Petersburg State University , St. Petersburg , Russia.

b Institute of Translational Biomedicine, St. Petersburg State University , St. Petersburg , Russia.

出版信息

Prion. 2016 Jul 3;10(4):269-82. doi: 10.1080/19336896.2016.1204060.

Abstract

Transmissible self-assembled fibrous cross-β polymer infectious proteins (prions) cause neurodegenerative diseases in mammals and control non-Mendelian heritable traits in yeast. Cross-species prion transmission is frequently impaired, due to sequence differences in prion-forming proteins. Recent studies of prion species barrier on the model of closely related yeast species show that colocalization of divergent proteins is not sufficient for the cross-species prion transmission, and that an identity of specific amino acid sequences and a type of prion conformational variant (strain) play a major role in the control of transmission specificity. In contrast, chemical compounds primarily influence transmission specificity via favoring certain strain conformations, while the species origin of the host cell has only a relatively minor input. Strain alterations may occur during cross-species prion conversion in some combinations. The model is discussed which suggests that different recipient proteins can acquire different spectra of prion strain conformations, which could be either compatible or incompatible with a particular donor strain.

摘要

可传播的自组装纤维状交叉β聚合物感染性蛋白(朊病毒)在哺乳动物中引发神经退行性疾病,并控制酵母中的非孟德尔遗传性状。由于朊病毒形成蛋白的序列差异,跨物种朊病毒传播常常受到阻碍。最近在密切相关酵母物种模型上对朊病毒物种屏障的研究表明,不同蛋白的共定位不足以实现跨物种朊病毒传播,特定氨基酸序列的一致性和朊病毒构象变体(毒株)的类型在控制传播特异性方面起主要作用。相比之下,化合物主要通过促进某些毒株构象来影响传播特异性,而宿主细胞的物种来源仅有相对较小的影响。在某些组合中,跨物种朊病毒转化过程中可能会发生毒株改变。文中讨论了这样一个模型,即不同的受体蛋白可以获得不同的朊病毒毒株构象谱,这些构象可能与特定的供体毒株兼容或不兼容。

相似文献

1
Strain conformation controls the specificity of cross-species prion transmission in the yeast model.
Prion. 2016 Jul 3;10(4):269-82. doi: 10.1080/19336896.2016.1204060.
2
Contributions of the Prion Protein Sequence, Strain, and Environment to the Species Barrier.
J Biol Chem. 2016 Jan 15;291(3):1277-88. doi: 10.1074/jbc.M115.684100. Epub 2015 Nov 12.
3
Prion species barrier between the closely related yeast proteins is detected despite coaggregation.
Proc Natl Acad Sci U S A. 2007 Feb 20;104(8):2791-6. doi: 10.1073/pnas.0611158104. Epub 2007 Feb 12.
4
Molecular basis for transmission barrier and interference between closely related prion proteins in yeast.
J Biol Chem. 2011 May 6;286(18):15773-80. doi: 10.1074/jbc.M110.183889. Epub 2011 Mar 15.
6
Sequence specificity and fidelity of prion transmission in yeast.
Semin Cell Dev Biol. 2011 Jul;22(5):444-51. doi: 10.1016/j.semcdb.2011.03.005. Epub 2011 Mar 23.
7
Radically different amyloid conformations dictate the seeding specificity of a chimeric Sup35 prion.
J Mol Biol. 2011 Apr 22;408(1):1-8. doi: 10.1016/j.jmb.2011.02.025. Epub 2011 Feb 17.
8
Conformational variations in an infectious protein determine prion strain differences.
Nature. 2004 Mar 18;428(6980):323-8. doi: 10.1038/nature02392.
9
Conformational diversity in a yeast prion dictates its seeding specificity.
Nature. 2001 Mar 8;410(6825):223-7. doi: 10.1038/35065632.
10
Life cycle of yeast prions: propagation mediated by amyloid fibrils.
Protein Pept Lett. 2009;16(3):271-6. doi: 10.2174/092986609787601796.

引用本文的文献

1
The Aβ42 Peptide and IAPP Physically Interact in a Yeast-Based Assay.
Int J Mol Sci. 2023 Sep 15;24(18):14122. doi: 10.3390/ijms241814122.
2
Biomolecular Assemblies: Moving from Observation to Predictive Design.
Chem Rev. 2018 Dec 26;118(24):11519-11574. doi: 10.1021/acs.chemrev.8b00038. Epub 2018 Oct 3.

本文引用的文献

1
Contributions of the Prion Protein Sequence, Strain, and Environment to the Species Barrier.
J Biol Chem. 2016 Jan 15;291(3):1277-88. doi: 10.1074/jbc.M115.684100. Epub 2015 Nov 12.
2
Controlling the prion propensity of glutamine/asparagine-rich proteins.
Prion. 2015;9(5):347-54. doi: 10.1080/19336896.2015.1111506.
3
Cell Biology of Prions and Prionoids: A Status Report.
Trends Cell Biol. 2016 Jan;26(1):40-51. doi: 10.1016/j.tcb.2015.08.007. Epub 2015 Oct 9.
6
Structure-based view on [PSI(+)] prion properties.
Prion. 2015;9(3):190-9. doi: 10.1080/19336896.2015.1044186.
7
Heterologous aggregates promote de novo prion appearance via more than one mechanism.
PLoS Genet. 2015 Jan 8;11(1):e1004814. doi: 10.1371/journal.pgen.1004814. eCollection 2015 Jan.
8
Cryoelectron microscopic structures of eukaryotic translation termination complexes containing eRF1-eRF3 or eRF1-ABCE1.
Cell Rep. 2014 Jul 10;8(1):59-65. doi: 10.1016/j.celrep.2014.04.058. Epub 2014 Jul 4.
9
Investigating the interactions of yeast prions: [SWI+], [PSI+], and [PIN+].
Genetics. 2014 Jun;197(2):685-700. doi: 10.1534/genetics.114.163402. Epub 2014 Apr 11.
10
The many shades of prion strain adaptation.
Prion. 2014 Mar-Apr;8(2):169-72. doi: 10.4161/pri.27836. Epub 2014 Feb 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验