Suppr超能文献

用于识别抗菌肽及其功能类型的不平衡多标签学习

Imbalanced multi-label learning for identifying antimicrobial peptides and their functional types.

作者信息

Lin Weizhong, Xu Dong

机构信息

nformation Engineering School, Jingdezhen Ceramic Institute, Jingdezhen 333406, China.

Department of Computer Science and Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA.

出版信息

Bioinformatics. 2016 Dec 15;32(24):3745-3752. doi: 10.1093/bioinformatics/btw560. Epub 2016 Aug 26.

Abstract

MOTIVATION

With the rapid increase of infection resistance to antibiotics, it is urgent to find novel infection therapeutics. In recent years, antimicrobial peptides (AMPs) have been utilized as potential alternatives for infection therapeutics. AMPs are key components of the innate immune system and can protect the host from various pathogenic bacteria. Identifying AMPs and their functional types has led to many studies, and various predictors using machine learning have been developed. However, there is room for improvement; in particular, no predictor takes into account the lack of balance among different functional AMPs.

RESULTS

In this paper, a new synthetic minority over-sampling technique on imbalanced and multi-label datasets, referred to as ML-SMOTE, was designed for processing and identifying AMPs' functional families. A novel multi-label classifier, MLAMP, was also developed using ML-SMOTE and grey pseudo amino acid composition. The classifier obtained 0.4846 subset accuracy and 0.16 hamming loss.

AVAILABILITY AND IMPLEMENTATION

A user-friendly web-server for MLAMP was established at http://www.jci-bioinfo.cn/MLAMP CONTACTS: linweizhong@jci.edu.cn or xudong@missouri.edu.

摘要

动机

随着感染对抗生素的耐药性迅速增加,寻找新型感染治疗方法迫在眉睫。近年来,抗菌肽(AMPs)已被用作感染治疗的潜在替代物。抗菌肽是先天免疫系统的关键组成部分,可以保护宿主免受各种病原菌的侵害。识别抗菌肽及其功能类型引发了许多研究,并且已经开发了各种使用机器学习的预测器。然而,仍有改进的空间;特别是,没有预测器考虑到不同功能抗菌肽之间缺乏平衡的情况。

结果

在本文中,设计了一种用于不平衡和多标签数据集的新的合成少数类过采样技术,称为ML-SMOTE,用于处理和识别抗菌肽的功能家族。还使用ML-SMOTE和灰色伪氨基酸组成开发了一种新型多标签分类器MLAMP。该分类器获得了0.4846的子集准确率和0.16的汉明损失。

可用性和实现方式

http://www.jci-bioinfo.cn/MLAMP上建立了一个用户友好的MLAMP网络服务器。联系方式:linweizhong@jci.edu.cn或xudong@missouri.edu。

相似文献

1
Imbalanced multi-label learning for identifying antimicrobial peptides and their functional types.
Bioinformatics. 2016 Dec 15;32(24):3745-3752. doi: 10.1093/bioinformatics/btw560. Epub 2016 Aug 26.
2
iAMP-2L: a two-level multi-label classifier for identifying antimicrobial peptides and their functional types.
Anal Biochem. 2013 May 15;436(2):168-77. doi: 10.1016/j.ab.2013.01.019. Epub 2013 Feb 6.
5
Characterization and Identification of Natural Antimicrobial Peptides on Different Organisms.
Int J Mol Sci. 2020 Feb 2;21(3):986. doi: 10.3390/ijms21030986.
9
AMAP: Hierarchical multi-label prediction of biologically active and antimicrobial peptides.
Comput Biol Med. 2019 Apr;107:172-181. doi: 10.1016/j.compbiomed.2019.02.018. Epub 2019 Feb 25.
10
CAMP: a useful resource for research on antimicrobial peptides.
Nucleic Acids Res. 2010 Jan;38(Database issue):D774-80. doi: 10.1093/nar/gkp1021. Epub 2009 Nov 18.

引用本文的文献

5
Tackling the Antimicrobial Resistance "Pandemic" with Machine Learning Tools: A Summary of Available Evidence.
Microorganisms. 2024 Apr 23;12(5):842. doi: 10.3390/microorganisms12050842.
8
TPpred-LE: therapeutic peptide function prediction based on label embedding.
BMC Biol. 2023 Oct 31;21(1):238. doi: 10.1186/s12915-023-01740-w.
9
Accelerating the Discovery and Design of Antimicrobial Peptides with Artificial Intelligence.
Methods Mol Biol. 2024;2714:329-352. doi: 10.1007/978-1-0716-3441-7_18.

本文引用的文献

2
seqlm: an MDL based method for identifying differentially methylated regions in high density methylation array data.
Bioinformatics. 2016 Sep 1;32(17):2604-10. doi: 10.1093/bioinformatics/btw304. Epub 2016 May 13.
6
iACP: a sequence-based tool for identifying anticancer peptides.
Oncotarget. 2016 Mar 29;7(13):16895-909. doi: 10.18632/oncotarget.7815.
7
pSuc-Lys: Predict lysine succinylation sites in proteins with PseAAC and ensemble random forest approach.
J Theor Biol. 2016 Apr 7;394:223-230. doi: 10.1016/j.jtbi.2016.01.020. Epub 2016 Jan 22.
9
pRNAm-PC: Predicting N(6)-methyladenosine sites in RNA sequences via physical-chemical properties.
Anal Biochem. 2016 Mar 15;497:60-7. doi: 10.1016/j.ab.2015.12.017. Epub 2015 Dec 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验