Suppr超能文献

不同生物体中天然抗菌肽的特性与鉴定。

Characterization and Identification of Natural Antimicrobial Peptides on Different Organisms.

机构信息

Department of Computer Science and Information Engineering, National Central University, Taoyuan 32001, Taiwan.

Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen 518172, China.

出版信息

Int J Mol Sci. 2020 Feb 2;21(3):986. doi: 10.3390/ijms21030986.

Abstract

Because of the rapid development of multidrug resistance, conventional antibiotics cannot kill pathogenic bacteria efficiently. New antibiotic treatments such as antimicrobial peptides (AMPs) can provide a possible solution to the antibiotic-resistance crisis. However, the identification of AMPs using experimental methods is expensive and time-consuming. Meanwhile, few studies use amino acid compositions (AACs) and physicochemical properties with different sequence lengths against different organisms to predict AMPs. Therefore, the major purpose of this study is to identify AMPs on seven categories of organisms, including amphibians, humans, fish, insects, plants, bacteria, and mammals. According to the one-rule attribute evaluation, the selected features were used to construct the predictive models based on the random forest algorithm. Compared to the accuracies of iAMP-2L (a web-server for identifying AMPs and their functional types), ADAM (a database of AMP), and MLAMP (a multi-label AMP classifier), the proposed method yielded higher than 92% in predicting AMPs on each category. Additionally, the sensitivities of the proposed models in the prediction of AMPs of seven organisms were higher than that of all other tools. Furthermore, several physicochemical properties (charge, hydrophobicity, polarity, polarizability, secondary structure, normalized van der Waals volume, and solvent accessibility) of AMPs were investigated according to their sequence lengths. As a result, the proposed method is a practical means to complement the existing tools in the characterization and identification of AMPs in different organisms.

摘要

由于多药耐药性的迅速发展,传统抗生素无法有效地杀死致病菌。新型抗生素治疗方法,如抗菌肽 (AMPs),可以为抗生素耐药危机提供一个可能的解决方案。然而,使用实验方法来鉴定 AMPs 既昂贵又耗时。同时,很少有研究使用不同长度序列针对不同生物体的氨基酸组成 (AACs) 和理化性质来预测 AMPs。因此,本研究的主要目的是鉴定包括两栖动物、人类、鱼类、昆虫、植物、细菌和哺乳动物在内的七类生物体上的 AMPs。根据单一规则属性评估,选择的特征用于基于随机森林算法构建预测模型。与 iAMP-2L(用于识别 AMPs 及其功能类型的网络服务器)、ADAM(AMPs 数据库)和 MLAMP(多标签 AMP 分类器)的准确率相比,该方法在预测每个类别上的 AMPs 时的准确率均高于 92%。此外,所提出模型在预测七种生物体的 AMPs 时的敏感性均高于所有其他工具。此外,还根据序列长度研究了 AMPs 的几个理化性质(电荷、疏水性、极性、极化率、二级结构、归一化范德华体积和溶剂可及性)。结果表明,该方法是一种实用的方法,可以补充现有工具,用于不同生物体中 AMPs 的特征描述和鉴定。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dff1/7038045/d9838090a24f/ijms-21-00986-g0A1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验