Tardieux Isabelle, Baum Jake
Institute of Advanced BioSciences, Institut National de la Santé et de la Recherche Médicale U1209, Centre National de la Recherche Scientifique UMR 5309, Université Grenoble Alpes, 38000, Grenoble, France
Department of Life Sciences, Imperial College London, London SW7 2AZ, England, UK
J Cell Biol. 2016 Aug 29;214(5):507-15. doi: 10.1083/jcb.201605100.
The capacity to migrate is fundamental to multicellular and single-celled life. Apicomplexan parasites, an ancient protozoan clade that includes malaria parasites (Plasmodium) and Toxoplasma, achieve remarkable speeds of directional cell movement. This rapidity is achieved via a divergent actomyosin motor system, housed within a narrow compartment that lies underneath the length of the parasite plasma membrane. How this motor functions at a mechanistic level during motility and host cell invasion is a matter of debate. Here, we integrate old and new insights toward refining the current model for the function of this motor with the aim of revitalizing interest in the mechanics of how these deadly pathogens move.
迁移能力是多细胞和单细胞生命的基础。顶复门寄生虫是一种古老的原生动物类群,包括疟原虫(疟原虫属)和弓形虫,它们能实现显著的定向细胞移动速度。这种快速性是通过一个不同的肌动球蛋白运动系统实现的,该系统位于寄生虫质膜长度下方的一个狭窄隔室内。在运动和宿主细胞入侵过程中,这种运动系统在机械层面是如何发挥作用的,这是一个有争议的问题。在这里,我们整合新旧见解,以完善当前关于这种运动系统功能的模型,目的是重新激发人们对这些致命病原体如何移动的力学机制的兴趣。