Nassar Matthew R, Frank Michael J
Department of Cognitive, Linguistic and Psychological Sciences, Brown Institute for Brain Science, Brown University, Providence RI 02912-1821.
Curr Opin Behav Sci. 2016 Oct;11:49-54. doi: 10.1016/j.cobeha.2016.04.003.
Generalizing knowledge from experimental data requires constructing theories capable of explaining observations and extending beyond them. Computational modeling offers formal quantitative methods for generating and testing theories of cognition and neural processing. These techniques can be used to extract general principles from specific experimental measurements, but introduce dangers inherent to theory: model-based analyses are conditioned on a set of fixed assumptions that impact the interpretations of experimental data. When these conditions are not met, model-based results can be misleading or biased. Recent work in computational modeling has highlighted the implications of this problem and developed new methods for minimizing its negative impact. Here we discuss the issues that arise when data is interpreted through models and strategies for avoiding misinterpretation of data through model fitting.
从实验数据中归纳知识需要构建能够解释观测结果并超越这些结果的理论。计算建模提供了用于生成和检验认知与神经处理理论的形式化定量方法。这些技术可用于从特定实验测量中提取一般原理,但也引入了理论固有的风险:基于模型的分析依赖于一组固定假设,这些假设会影响对实验数据的解释。当这些条件不满足时,基于模型的结果可能会产生误导或偏差。计算建模领域的最新工作突出了这个问题的影响,并开发了新方法来尽量减少其负面影响。在这里,我们讨论通过模型解释数据时出现的问题,以及通过模型拟合避免数据误判的策略。