Suppr超能文献

使用递归神经网络估计人类选择行为中的不可约随机性。

Using recurrent neural network to estimate irreducible stochasticity in human choice behavior.

机构信息

Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.

TAD, Center of AI & Data Science, Tel Aviv University, Tel Aviv, Israel.

出版信息

Elife. 2024 Sep 6;13:RP90082. doi: 10.7554/eLife.90082.

Abstract

Theoretical computational models are widely used to describe latent cognitive processes. However, these models do not equally explain data across participants, with some individuals showing a bigger predictive gap than others. In the current study, we examined the use of theory-independent models, specifically recurrent neural networks (RNNs), to classify the source of a predictive gap in the observed data of a single individual. This approach aims to identify whether the low predictability of behavioral data is mainly due to noisy decision-making or misspecification of the theoretical model. First, we used computer simulation in the context of reinforcement learning to demonstrate that RNNs can be used to identify model misspecification in simulated agents with varying degrees of behavioral noise. Specifically, both prediction performance and the number of RNN training epochs (i.e., the point of early stopping) can be used to estimate the amount of stochasticity in the data. Second, we applied our approach to an empirical dataset where the actions of low IQ participants, compared with high IQ participants, showed lower predictability by a well-known theoretical model (i.e., Daw's hybrid model for the two-step task). Both the predictive gap and the point of early stopping of the RNN suggested that model misspecification is similar across individuals. This led us to a provisional conclusion that low IQ subjects are mostly noisier compared to their high IQ peers, rather than being more misspecified by the theoretical model. We discuss the implications and limitations of this approach, considering the growing literature in both theoretical and data-driven computational modeling in decision-making science.

摘要

理论计算模型被广泛用于描述潜在的认知过程。然而,这些模型并不能平等地解释参与者的数据,一些个体的预测差距比其他个体更大。在当前的研究中,我们研究了使用独立于理论的模型,特别是递归神经网络(RNN),来分类单个个体观察数据中预测差距的来源。这种方法旨在确定行为数据的低可预测性主要是由于决策噪声还是理论模型的不精确。首先,我们在强化学习的背景下使用计算机模拟来证明 RNN 可以用于识别具有不同行为噪声程度的模拟代理中的模型不精确性。具体来说,预测性能和 RNN 训练轮数(即提前停止的点)都可以用于估计数据中的随机性程度。其次,我们将我们的方法应用于一个经验数据集,其中低智商参与者的行为与高智商参与者相比,由一个著名的理论模型(即两步任务的 Daw 混合模型)预测的可预测性较低。RNN 的预测差距和提前停止点都表明,个体之间的模型不精确性相似。这使我们得出一个暂定的结论,即与高智商同龄人相比,低智商受试者的噪声较大,而不是由理论模型的不精确性更大。我们讨论了这种方法的意义和局限性,同时考虑了决策科学中理论和数据驱动计算建模的不断增长的文献。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验