Zhou Wei, Zhuang Yibin, Bai Yanfen, Bi Huiping, Liu Tao, Ma Yanhe
Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
Microb Cell Fact. 2016 Aug 30;15(1):149. doi: 10.1186/s12934-016-0549-9.
Type III polyketide synthases (PKSs) contribute to the synthesis of many economically important natural products, which are typically produced by direct extraction from plants or synthesized chemically. For example, humulone and lupulone (Fig. 1a) in hops (Humulus lupulus) account for the characteristic bitter taste of beer and display multiple pharmacological effects. 4-Hydroxy-6-methyl-2-pyrone is a precursor of parasorboside contributing to insect and disease resistance of plant Gerbera hybrida, and was recently demonstrated to be a potential platform chemical. Fig. 1 Examples of phloroglucinols (a) and 2-pyrones (b) synthesized by type III PKS. PIBP phlorisobutyrophenone; PIVP phlorisovalerophenone; TAL 4-hydroxy-6-methyl-2-pyrone (triacetic acid lactone); HIPP 4-hydroxy-6-isopropyl-2-pyrone; HIBP 4-hydroxy-6-isobutyl-2-pyrone
In this study, we achieved simultaneous biosynthesis of phlorisovalerophenone, a key intermediate of humulone biosynthesis and 4-hydroxy-6-isobutyl-2-pyrone in Escherichia coli from glucose. First, we constructed a biosynthetic pathway of isovaleryl-CoA via hydroxy-3-methylglutaryl CoA followed by dehydration, decarboxylation and reduction in E. coli. Subsequently, the type III PKSs valerophenone synthase or chalcone synthase from plants were introduced into the above E. coli strain, to produce phlorisovalerophenone and 4-hydroxy-6-isobutyl-2-pyrone at the highest titers of 6.4 or 66.5 mg/L, respectively.
The report of biosynthesis of phlorisovalerophenone and 4-hydroxy-6-isobutyl-2-pyrone in E. coli adds a new example to the list of valuable compounds synthesized in E. coli from renewable carbon resources by type III PKSs.
III型聚酮合酶(PKSs)参与许多具有重要经济价值的天然产物的合成,这些天然产物通常通过从植物中直接提取或化学合成获得。例如,啤酒花(Humulus lupulus)中的葎草酮和蛇麻酮(图1a)赋予啤酒独特的苦味,并具有多种药理作用。4-羟基-6-甲基-2-吡喃酮是雏菊(Gerbera hybrida)中对昆虫和疾病具有抗性的副山梨醇苷的前体,最近被证明是一种潜在的平台化学品。图1由III型PKS合成的间苯三酚(a)和2-吡喃酮(b)的示例。PIBP 4-苯基异丁酰苯;PIVP 4-苯基戊酰苯;TAL 4-羟基-6-甲基-2-吡喃酮(三乙酸内酯);HIPP 4-羟基-6-异丙基-2-吡喃酮;HIBP 4-羟基-6-异丁基-2-吡喃酮
在本研究中,我们实现了在大肠杆菌中从葡萄糖同时生物合成葎草酮生物合成的关键中间体4-苯基戊酰苯和4-羟基-6-异丁基-2-吡喃酮。首先,我们在大肠杆菌中构建了一条通过羟基-3-甲基戊二酰辅酶A生成异戊酰辅酶A的生物合成途径,随后进行脱水、脱羧和还原反应。随后,将来自植物的III型PKSs戊酰苯合酶或查尔酮合酶引入上述大肠杆菌菌株,分别以最高滴度6.4或66.5mg/L产生4-苯基戊酰苯和4-羟基-6-异丁基-2-吡喃酮。
关于在大肠杆菌中生物合成4-苯基戊酰苯和4-羟基-6-异丁基-2-吡喃酮的报道为通过III型PKSs从可再生碳资源在大肠杆菌中合成有价值化合物的列表增添了一个新例子。