Suppr超能文献

在大肠杆菌中构建短支链酰基辅酶 A 合成途径并将氯霉素酰化为支链衍生物。

Engineered short branched-chain acyl-CoA synthesis in E. coli and acylation of chloramphenicol to branched-chain derivatives.

机构信息

Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 Xiqidao, Airport Economic Park, Tianjin, 300308, China.

出版信息

Appl Microbiol Biotechnol. 2013 Dec;97(24):10339-48. doi: 10.1007/s00253-013-5262-6. Epub 2013 Oct 8.

Abstract

Short branched-chain acyl-CoAs are important building blocks for a wide variety of pharmaceutically valuable natural products. Escherichia coli has been used as a heterologous host for the production of a variety of natural compounds for many years. In the current study, we engineered synthesis of isobutyryl-CoA and isovaleryl-CoA from glucose in E. coli by integration of the branched-chain α-keto acid dehydrogenase complex from Streptomyces avermitilis. In the presence of the chloramphenicol acetyltransferase (cat) gene, chloramphenicol was converted to both chloramphenicol-3-isobutyrate and chloramphenicol-3-isovalerate by the recombinant E. coli strains, which suggested successful synthesis of isobutyryl-CoA and isovaleryl-CoA. Furthermore, we improved the α-keto acid precursor supply by overexpressing the alsS gene from Bacillus subtilis and the ilvC and ilvD genes from E. coli and thus enhanced the synthesis of short branched-chain acyl-CoAs. By feeding 25 mg/L chloramphenicol, 2.96 ± 0.06 mg/L chloramphenicol-3-isobutyrate and 3.94 ± 0.06 mg/L chloramphenicol-3-isovalerate were generated by the engineered E. coli strain, which indicated efficient biosynthesis of short branched-chain acyl-CoAs. HPLC analysis showed that the most efficient E. coli strain produced 80.77 ± 3.83 nmol/g wet weight isovaleryl-CoA. To our knowledge, this is the first report of production of short branched-chain acyl-CoAs in E. coli and opens a way to biosynthesize various valuable natural compounds based on these special building blocks from renewable carbon sources.

摘要

短链支链酰基辅酶 A 是各种具有药用价值的天然产物的重要构建模块。多年来,大肠杆菌已被用作生产各种天然化合物的异源宿主。在本研究中,我们通过整合来自链霉菌的支链α-酮酸脱氢酶复合物,在大肠杆菌中从葡萄糖合成异丁酰辅酶 A 和异戊酰辅酶 A。在氯霉素乙酰转移酶(cat)基因的存在下,重组大肠杆菌菌株将氯霉素转化为氯霉素-3-异丁酸和氯霉素-3-异戊酸,这表明成功合成了异丁酰辅酶 A 和异戊酰辅酶 A。此外,我们通过过表达枯草芽孢杆菌的 alsS 基因、大肠杆菌的 ilvC 和 ilvD 基因来改善α-酮酸前体供应,从而增强了短链支链酰基辅酶 A 的合成。通过添加 25 mg/L 的氯霉素,工程大肠杆菌菌株产生了 2.96±0.06 mg/L 的氯霉素-3-异丁酸和 3.94±0.06 mg/L 的氯霉素-3-异戊酸,表明短链支链酰基辅酶 A 的高效生物合成。HPLC 分析表明,最有效的大肠杆菌菌株产生了 80.77±3.83 nmol/g 湿重的异戊酰辅酶 A。据我们所知,这是首次在大肠杆菌中生产短链支链酰基辅酶 A 的报道,为基于这些特殊构建模块从可再生碳源生物合成各种有价值的天然化合物开辟了道路。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验