Suppr超能文献

一种用于描述愈合皮肤伤口中胶原蛋白束分布依赖性收缩及随后回缩的生物力学数学模型。

A biomechanical mathematical model for the collagen bundle distribution-dependent contraction and subsequent retraction of healing dermal wounds.

作者信息

Koppenol Daniël C, Vermolen Fred J, Niessen Frank B, van Zuijlen Paul P M, Vuik Kees

机构信息

Delft Institute of Applied Mathematics, Delft University of Technology, Delft, The Netherlands.

Department of Plastic, Reconstructive and Hand Surgery, MOVE Research Institute, VU University Medical Centre, Amsterdam, The Netherlands.

出版信息

Biomech Model Mechanobiol. 2017 Feb;16(1):345-361. doi: 10.1007/s10237-016-0821-2. Epub 2016 Aug 31.

Abstract

A continuum hypothesis-based, biomechanical model is presented for the simulation of the collagen bundle distribution-dependent contraction and subsequent retraction of healing dermal wounds that cover a large surface area. Since wound contraction mainly takes place in the dermal layer of the skin, solely a portion of this layer is included explicitly into the model. This portion of dermal layer is modeled as a heterogeneous, orthotropic continuous solid with bulk mechanical properties that are locally dependent on both the local concentration and the local geometrical arrangement of the collagen bundles. With respect to the dynamic regulation of the geometrical arrangement of the collagen bundles, it is assumed that a portion of the collagen molecules are deposited and reoriented in the direction of movement of (myo)fibroblasts. The remainder of the newly secreted collagen molecules are deposited by ratio in the direction of the present collagen bundles. Simulation results show that the distribution of the collagen bundles influences the evolution over time of both the shape of the wounded area and the degree of overall contraction of the wounded area. Interestingly, these effects are solely a consequence of alterations in the initial overall distribution of the collagen bundles, and not a consequence of alterations in the evolution over time of the different cell densities and concentrations of the modeled constituents. In accordance with experimental observations, simulation results show furthermore that ultimately the majority of the collagen molecules ends up permanently oriented toward the center of the wound and in the plane that runs parallel to the surface of the skin.

摘要

提出了一种基于连续统假设的生物力学模型,用于模拟大面积愈合皮肤伤口中依赖胶原束分布的收缩及随后的回缩。由于伤口收缩主要发生在皮肤的真皮层,模型中仅明确包含该层的一部分。这部分真皮层被建模为一种非均质、正交各向异性的连续固体,其整体力学性能局部依赖于胶原束的局部浓度和局部几何排列。关于胶原束几何排列的动态调节,假定一部分胶原分子沿(肌)成纤维细胞的运动方向沉积并重新定向。其余新分泌的胶原分子按比例沿现有胶原束的方向沉积。模拟结果表明,胶原束的分布会影响伤口区域形状随时间的演变以及伤口区域的整体收缩程度。有趣的是,这些影响仅仅是胶原束初始整体分布变化的结果,而非建模成分中不同细胞密度和浓度随时间演变变化的结果。与实验观察结果一致,模拟结果还表明,最终大多数胶原分子最终会永久地朝向伤口中心并在与皮肤表面平行的平面内定向。

相似文献

1
A biomechanical mathematical model for the collagen bundle distribution-dependent contraction and subsequent retraction of healing dermal wounds.
Biomech Model Mechanobiol. 2017 Feb;16(1):345-361. doi: 10.1007/s10237-016-0821-2. Epub 2016 Aug 31.
2
A mathematical model for the simulation of the formation and the subsequent regression of hypertrophic scar tissue after dermal wounding.
Biomech Model Mechanobiol. 2017 Feb;16(1):15-32. doi: 10.1007/s10237-016-0799-9. Epub 2016 May 26.
3
A biomechanical model of wound contraction and scar formation.
J Theor Biol. 2013 Sep 7;332:228-48. doi: 10.1016/j.jtbi.2013.03.013. Epub 2013 Apr 4.
4
Higher numbers of autologous fibroblasts in an artificial dermal substitute improve tissue regeneration and modulate scar tissue formation.
J Pathol. 2000 Apr;190(5):595-603. doi: 10.1002/(SICI)1096-9896(200004)190:5<595::AID-PATH572>3.0.CO;2-V.
6
Fibroblast migration and collagen deposition during dermal wound healing: mathematical modelling and clinical implications.
Philos Trans A Math Phys Eng Sci. 2006 Jun 15;364(1843):1385-405. doi: 10.1098/rsta.2006.1773.
8
A mathematical model for the simulation of the contraction of burns.
J Math Biol. 2017 Jul;75(1):1-31. doi: 10.1007/s00285-016-1075-4. Epub 2016 Nov 8.

引用本文的文献

1
Durotaxis and extracellular matrix degradation promote the clustering of cancer cells.
iScience. 2025 Jan 24;28(3):111883. doi: 10.1016/j.isci.2025.111883. eCollection 2025 Mar 21.
2
Mini review on collagens in normal skin and pathological scars: current understanding and future perspective.
Front Med (Lausanne). 2024 Jul 18;11:1449597. doi: 10.3389/fmed.2024.1449597. eCollection 2024.
3
Implant Texture and Capsular Contracture: A Review of Cellular and Molecular Pathways.
Plast Reconstr Surg Glob Open. 2024 May 14;12(5):e5802. doi: 10.1097/GOX.0000000000005802. eCollection 2024 May.
4
Models for Implant-Induced Capsular Contracture Post Breast Cancer Surgery.
Bull Math Biol. 2023 Dec 13;86(1):7. doi: 10.1007/s11538-023-01236-2.
5
Semi-autonomous wound invasion via matrix-deposited, haptotactic cues.
J Theor Biol. 2023 Jul 7;568:111506. doi: 10.1016/j.jtbi.2023.111506. Epub 2023 Apr 22.
6
Recent advances in decellularized biomaterials for wound healing.
Mater Today Bio. 2023 Feb 23;19:100589. doi: 10.1016/j.mtbio.2023.100589. eCollection 2023 Apr.
7
Sensitivity of a two-dimensional biomorphoelastic model for post-burn contraction.
Biomech Model Mechanobiol. 2023 Feb;22(1):105-121. doi: 10.1007/s10237-022-01634-w. Epub 2022 Oct 13.
8
Exogenous supply of Hsp47 triggers fibrillar collagen deposition in skin cell cultures in vitro.
BMC Mol Cell Biol. 2020 Mar 30;21(1):22. doi: 10.1186/s12860-020-00267-0.
9
Can Mathematics and Computational Modeling Help Treat Deep Tissue Injuries?
Adv Wound Care (New Rochelle). 2019 Dec 1;8(12):703-714. doi: 10.1089/wound.2018.0892. Epub 2019 Nov 6.
10
Biomedical implications from a morphoelastic continuum model for the simulation of contracture formation in skin grafts that cover excised burns.
Biomech Model Mechanobiol. 2017 Aug;16(4):1187-1206. doi: 10.1007/s10237-017-0881-y. Epub 2017 Feb 8.

本文引用的文献

1
A mathematical model for the simulation of the formation and the subsequent regression of hypertrophic scar tissue after dermal wounding.
Biomech Model Mechanobiol. 2017 Feb;16(1):15-32. doi: 10.1007/s10237-016-0799-9. Epub 2016 May 26.
2
A multi-agent cell-based model for wound contraction.
J Biomech. 2016 May 24;49(8):1388-1401. doi: 10.1016/j.jbiomech.2015.11.058. Epub 2015 Dec 12.
3
A morphoelastic model for dermal wound closure.
Biomech Model Mechanobiol. 2016 Jun;15(3):663-81. doi: 10.1007/s10237-015-0716-7. Epub 2015 Aug 12.
4
A cell-regulatory mechanism involving feedback between contraction and tissue formation guides wound healing progression.
PLoS One. 2014 Mar 28;9(3):e92774. doi: 10.1371/journal.pone.0092774. eCollection 2014.
6
A biomechanical model of wound contraction and scar formation.
J Theor Biol. 2013 Sep 7;332:228-48. doi: 10.1016/j.jtbi.2013.03.013. Epub 2013 Apr 4.
7
Adaptation of the dermal collagen structure of human skin and scar tissue in response to stretch: an experimental study.
Wound Repair Regen. 2012 Sep-Oct;20(5):658-66. doi: 10.1111/j.1524-475X.2012.00827.x. Epub 2012 Aug 10.
8
Numerical modelling of the angiogenesis process in wound contraction.
Biomech Model Mechanobiol. 2013 Apr;12(2):349-60. doi: 10.1007/s10237-012-0403-x. Epub 2012 May 15.
9
Automated estimation of collagen fibre dispersion in the dermis and its contribution to the anisotropic behaviour of skin.
Ann Biomed Eng. 2012 Aug;40(8):1666-78. doi: 10.1007/s10439-012-0542-3. Epub 2012 Mar 17.
10
A fibrocontractive mechanochemical model of dermal wound closure incorporating realistic growth factor kinetics.
Bull Math Biol. 2012 May;74(5):1143-70. doi: 10.1007/s11538-011-9712-y. Epub 2012 Jan 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验