Suppr超能文献

一种用于模拟皮肤创伤后增生性瘢痕组织形成及后续消退的数学模型。

A mathematical model for the simulation of the formation and the subsequent regression of hypertrophic scar tissue after dermal wounding.

作者信息

Koppenol Daniël C, Vermolen Fred J, Niessen Frank B, van Zuijlen Paul P M, Vuik Kees

机构信息

Delft Institute of Applied Mathematics, Delft University of Technology, Delft, The Netherlands.

Department of Plastic, Reconstructive and Hand Surgery, MOVE Research Institute, VU University Medical Centre, Amsterdam, The Netherlands.

出版信息

Biomech Model Mechanobiol. 2017 Feb;16(1):15-32. doi: 10.1007/s10237-016-0799-9. Epub 2016 May 26.

Abstract

A continuum hypothesis-based model is presented for the simulation of the formation and the subsequent regression of hypertrophic scar tissue after dermal wounding. Solely the dermal layer of the skin is modeled explicitly and it is modeled as a heterogeneous, isotropic and compressible neo-Hookean solid. With respect to the constituents of the dermal layer, the following components are selected as primary model components: fibroblasts, myofibroblasts, a generic signaling molecule and collagen molecules. A good match with respect to the evolution of the thickness of the dermal layer of scars between the outcomes of simulations and clinical measurements on hypertrophic scars at different time points after injury in human subjects is demonstrated. Interestingly, the comparison between the outcomes of the simulations and the clinical measurements demonstrates that a relatively high apoptosis rate of myofibroblasts results in scar tissue that behaves more like normal scar tissue with respect to the evolution of the thickness of the tissue over time, while a relatively low apoptosis rate results in scar tissue that behaves like hypertrophic scar tissue with respect to the evolution of the thickness of the tissue over time. Our ultimate goal is to construct models with which the properties of newly generated tissues that form during wound healing can be predicted with a high degree of certainty. The development of the presented model is considered by us as a step toward their construction.

摘要

提出了一种基于连续统假设的模型,用于模拟皮肤创伤后增生性瘢痕组织的形成及随后的消退。仅对皮肤的真皮层进行显式建模,并将其建模为非均质、各向同性且可压缩的新胡克固体。关于真皮层的组成成分,选择以下组分作为主要模型组分:成纤维细胞、肌成纤维细胞、一种通用信号分子和胶原分子。结果表明,在模拟结果与人类受试者受伤后不同时间点增生性瘢痕的真皮层厚度演变的临床测量之间,存在良好的匹配。有趣的是,模拟结果与临床测量的比较表明,肌成纤维细胞相对较高的凋亡率会导致瘢痕组织在组织厚度随时间演变方面表现得更像正常瘢痕组织,而相对较低的凋亡率会导致瘢痕组织在组织厚度随时间演变方面表现得像增生性瘢痕组织。我们的最终目标是构建能够高度准确地预测伤口愈合过程中形成的新生组织特性的模型。我们认为所提出模型的开发是朝着构建此类模型迈出的一步。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a4bf/5285433/7d308155b558/10237_2016_799_Fig1_HTML.jpg

相似文献

1
A mathematical model for the simulation of the formation and the subsequent regression of hypertrophic scar tissue after dermal wounding.
Biomech Model Mechanobiol. 2017 Feb;16(1):15-32. doi: 10.1007/s10237-016-0799-9. Epub 2016 May 26.
2
A mathematical model for the simulation of the contraction of burns.
J Math Biol. 2017 Jul;75(1):1-31. doi: 10.1007/s00285-016-1075-4. Epub 2016 Nov 8.
3
A biomechanical mathematical model for the collagen bundle distribution-dependent contraction and subsequent retraction of healing dermal wounds.
Biomech Model Mechanobiol. 2017 Feb;16(1):345-361. doi: 10.1007/s10237-016-0821-2. Epub 2016 Aug 31.
4
Biomedical implications from a morphoelastic continuum model for the simulation of contracture formation in skin grafts that cover excised burns.
Biomech Model Mechanobiol. 2017 Aug;16(4):1187-1206. doi: 10.1007/s10237-017-0881-y. Epub 2017 Feb 8.
10
Systemic depletion of macrophages in the subacute phase of wound healing reduces hypertrophic scar formation.
Wound Repair Regen. 2016 Jul;24(4):644-56. doi: 10.1111/wrr.12442. Epub 2016 Jun 14.

引用本文的文献

1
Biomorphoelasticity alone: limitations in modeling post-burn contraction and hypertrophy without finite strains.
Biomech Model Mechanobiol. 2025 Aug;24(4):1313-1326. doi: 10.1007/s10237-025-01969-0. Epub 2025 Jun 5.
2
Computational mechanobiology model evaluating healing of postoperative cavities following breast-conserving surgery.
Comput Biol Med. 2023 Oct;165:107342. doi: 10.1016/j.compbiomed.2023.107342. Epub 2023 Aug 18.
4
Stability of a two-dimensional biomorphoelastic model for post-burn contraction.
J Math Biol. 2023 Mar 24;86(4):59. doi: 10.1007/s00285-023-01893-w.
5
Sensitivity of a two-dimensional biomorphoelastic model for post-burn contraction.
Biomech Model Mechanobiol. 2023 Feb;22(1):105-121. doi: 10.1007/s10237-022-01634-w. Epub 2022 Oct 13.
6
In Vivo Models for Hypertrophic Scars-A Systematic Review.
Medicina (Kaunas). 2022 May 30;58(6):736. doi: 10.3390/medicina58060736.
7
The Future of Burn Care From a Complexity Science Perspective.
J Burn Care Res. 2022 Nov 2;43(6):1312-1321. doi: 10.1093/jbcr/irac029.
8
Research progress of scar repair and its influence on physical and mental health.
Int J Burns Trauma. 2021 Dec 15;11(6):442-446. eCollection 2021.
9
Immunological mechanisms of scarring and their psychological impact on patients.
Am J Clin Exp Immunol. 2021 Oct 15;10(3):65-70. eCollection 2021.
10
Mechanobiological wound model for improved design and evaluation of collagen dermal replacement scaffolds.
Acta Biomater. 2021 Nov;135:368-382. doi: 10.1016/j.actbio.2021.08.007. Epub 2021 Aug 12.

本文引用的文献

1
Challenges in the Modeling of Wound Healing Mechanisms in Soft Biological Tissues.
Ann Biomed Eng. 2015 Jul;43(7):1654-65. doi: 10.1007/s10439-014-1200-8. Epub 2014 Dec 2.
2
Longitudinal burn scar quantification.
Burns. 2014 Dec;40(8):1504-12. doi: 10.1016/j.burns.2014.03.002. Epub 2014 Apr 2.
3
Systems-based approaches toward wound healing.
Pediatr Res. 2013 Apr;73(4 Pt 2):553-63. doi: 10.1038/pr.2013.3. Epub 2013 Jan 11.
4
Differential expression of matrix metalloproteases in human fibroblasts with different origins.
Biochem Res Int. 2012;2012:875742. doi: 10.1155/2012/875742. Epub 2012 Mar 4.
5
A fibrocontractive mechanochemical model of dermal wound closure incorporating realistic growth factor kinetics.
Bull Math Biol. 2012 May;74(5):1143-70. doi: 10.1007/s11538-011-9712-y. Epub 2012 Jan 13.
6
A finite-element model for healing of cutaneous wounds combining contraction, angiogenesis and closure.
J Math Biol. 2012 Nov;65(5):967-96. doi: 10.1007/s00285-011-0487-4. Epub 2011 Nov 10.
7
Macrophages in skin injury and repair.
Immunobiology. 2011 Jul;216(7):753-62. doi: 10.1016/j.imbio.2011.01.001. Epub 2011 Jan 8.
8
Mathematical modeling in wound healing, bone regeneration and tissue engineering.
Acta Biotheor. 2010 Dec;58(4):355-67. doi: 10.1007/s10441-010-9112-y. Epub 2010 Jul 31.
9
Quantifying cellular traction forces in three dimensions.
Proc Natl Acad Sci U S A. 2009 Dec 29;106(52):22108-13. doi: 10.1073/pnas.0904565106. Epub 2009 Dec 15.
10
Biomechanical properties of in vivo human skin from dynamic optical coherence elastography.
IEEE Trans Biomed Eng. 2010 Apr;57(4):953-9. doi: 10.1109/TBME.2009.2033464. Epub 2009 Oct 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验