Suppr超能文献

一种涉及收缩与组织形成之间反馈的细胞调节机制引导伤口愈合进程。

A cell-regulatory mechanism involving feedback between contraction and tissue formation guides wound healing progression.

作者信息

Valero Clara, Javierre Etelvina, García-Aznar José Manuel, Gómez-Benito María José

机构信息

Multiscale in Mechanical and Biological Engineering (M2BE), Aragón Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain.

Centro Universitario de la Defensa de Zaragoza, Academia General Militar, Zaragoza, Spain.

出版信息

PLoS One. 2014 Mar 28;9(3):e92774. doi: 10.1371/journal.pone.0092774. eCollection 2014.

Abstract

Wound healing is a process driven by cells. The ability of cells to sense mechanical stimuli from the extracellular matrix that surrounds them is used to regulate the forces that cells exert on the tissue. Stresses exerted by cells play a central role in wound contraction and have been broadly modelled. Traditionally, these stresses are assumed to be dependent on variables such as the extracellular matrix and cell or collagen densities. However, we postulate that cells are able to regulate the healing process through a mechanosensing mechanism regulated by the contraction that they exert. We propose that cells adjust the contraction level to determine the tissue functions regulating all main activities, such as proliferation, differentiation and matrix production. Hence, a closed-regulatory feedback loop is proposed between contraction and tissue formation. The model consists of a system of partial differential equations that simulates the evolution of fibroblasts, myofibroblasts, collagen and a generic growth factor, as well as the deformation of the extracellular matrix. This model is able to predict the wound healing outcome without requiring the addition of phenomenological laws to describe the time-dependent contraction evolution. We have reproduced two in vivo experiments to evaluate the predictive capacity of the model, and we conclude that there is feedback between the level of cell contraction and the tissue regenerated in the wound.

摘要

伤口愈合是一个由细胞驱动的过程。细胞感知其周围细胞外基质机械刺激的能力被用于调节细胞对组织施加的力。细胞施加的应力在伤口收缩中起核心作用,并且已经有了广泛的模型。传统上,这些应力被认为取决于诸如细胞外基质、细胞或胶原蛋白密度等变量。然而,我们推测细胞能够通过由它们所施加的收缩调节的机械传感机制来调节愈合过程。我们提出细胞会调整收缩水平以确定调节所有主要活动(如增殖、分化和基质产生)的组织功能。因此,我们提出在收缩和组织形成之间存在一个封闭的调节反馈回路。该模型由一个偏微分方程组组成,它模拟成纤维细胞、肌成纤维细胞、胶原蛋白和一种通用生长因子的演变,以及细胞外基质的变形。这个模型能够预测伤口愈合结果,而无需添加现象学定律来描述随时间变化的收缩演变。我们重现了两个体内实验来评估该模型的预测能力,并且我们得出结论,细胞收缩水平与伤口中再生的组织之间存在反馈。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9f87/3969377/e8958a4b78a6/pone.0092774.g001.jpg

相似文献

1
A cell-regulatory mechanism involving feedback between contraction and tissue formation guides wound healing progression.
PLoS One. 2014 Mar 28;9(3):e92774. doi: 10.1371/journal.pone.0092774. eCollection 2014.
2
Mechanical regulation of myofibroblast phenoconversion and collagen contraction.
Exp Cell Res. 2019 Jun 1;379(1):119-128. doi: 10.1016/j.yexcr.2019.03.027. Epub 2019 Mar 22.
4
Fibroblasts and myofibroblasts in wound healing: force generation and measurement.
J Tissue Viability. 2011 Nov;20(4):108-20. doi: 10.1016/j.jtv.2009.11.004. Epub 2009 Dec 7.
5
The altered mechanical phenotype of fetal fibroblasts hinders myofibroblast differentiation.
Wound Repair Regen. 2019 Jan;27(1):29-38. doi: 10.1111/wrr.12677. Epub 2018 Nov 15.
6
The hypothesis of 'biophysical matrix contraction': wound contraction revisited.
Int Wound J. 2008 Jun;5(3):477-82. doi: 10.1111/j.1742-481X.2007.00402.x.
9
Continuum model of fibroblast-driven wound contraction: inflammation-mediation.
J Theor Biol. 1992 Sep 21;158(2):135-72. doi: 10.1016/s0022-5193(05)80715-5.
10
Calpain activity is essential in skin wound healing and contributes to scar formation.
PLoS One. 2012;7(5):e37084. doi: 10.1371/journal.pone.0037084. Epub 2012 May 16.

引用本文的文献

1
Computational mechanobiology model evaluating healing of postoperative cavities following breast-conserving surgery.
Comput Biol Med. 2023 Oct;165:107342. doi: 10.1016/j.compbiomed.2023.107342. Epub 2023 Aug 18.
3
Mechano-biological and bio-mechanical pathways in cutaneous wound healing.
PLoS Comput Biol. 2023 Mar 9;19(3):e1010902. doi: 10.1371/journal.pcbi.1010902. eCollection 2023 Mar.
4
Sensitivity of a two-dimensional biomorphoelastic model for post-burn contraction.
Biomech Model Mechanobiol. 2023 Feb;22(1):105-121. doi: 10.1007/s10237-022-01634-w. Epub 2022 Oct 13.
5
Supracellular measurement of spatially varying mechanical heterogeneities in live monolayers.
Biophys J. 2022 Sep 20;121(18):3358-3369. doi: 10.1016/j.bpj.2022.08.024. Epub 2022 Aug 27.
6
Multiscale mechanobiology: Coupling models of adhesion kinetics and nonlinear tissue mechanics.
Biophys J. 2022 Feb 15;121(4):525-539. doi: 10.1016/j.bpj.2022.01.012. Epub 2022 Jan 21.
7
Mechanobiological wound model for improved design and evaluation of collagen dermal replacement scaffolds.
Acta Biomater. 2021 Nov;135:368-382. doi: 10.1016/j.actbio.2021.08.007. Epub 2021 Aug 12.
9
Wound Management Property of a Hydroethanolic Leaf Extract of DC.
Adv Pharmacol Pharm Sci. 2021 Jun 17;2021:6693718. doi: 10.1155/2021/6693718. eCollection 2021.
10
Fibronectin-based nanomechanical biosensors to map 3D surface strains in live cells and tissue.
Nat Commun. 2020 Nov 18;11(1):5883. doi: 10.1038/s41467-020-19659-z.

本文引用的文献

2
Dynamic mechanisms of cell rigidity sensing: insights from a computational model of actomyosin networks.
PLoS One. 2012;7(11):e49174. doi: 10.1371/journal.pone.0049174. Epub 2012 Nov 5.
3
How linear tension converts to curvature: geometric control of bone tissue growth.
PLoS One. 2012;7(5):e36336. doi: 10.1371/journal.pone.0036336. Epub 2012 May 11.
4
A fibrocontractive mechanochemical model of dermal wound closure incorporating realistic growth factor kinetics.
Bull Math Biol. 2012 May;74(5):1143-70. doi: 10.1007/s11538-011-9712-y. Epub 2012 Jan 13.
5
Mechanobiology of scarring.
Wound Repair Regen. 2011 Sep;19 Suppl 1:s2-9. doi: 10.1111/j.1524-475X.2011.00707.x.
6
Fibroblast expression of α-smooth muscle actin, α2β1 integrin and αvβ3 integrin: influence of surface rigidity.
Exp Mol Pathol. 2011 Aug;91(1):394-9. doi: 10.1016/j.yexmp.2011.04.007. Epub 2011 Apr 22.
7
Adhesion dynamics and durotaxis in migrating cells.
Phys Biol. 2011 Feb;8(1):015011. doi: 10.1088/1478-3975/8/1/015011. Epub 2011 Feb 7.
8
An interspecies computational study on limb lengthening.
Proc Inst Mech Eng H. 2010 Nov;224(11):1245-56. doi: 10.1243/09544119JEIM787.
9
A two-compartment mechanochemical model of the roles of transforming growth factor β and tissue tension in dermal wound healing.
J Theor Biol. 2011 Mar 7;272(1):145-59. doi: 10.1016/j.jtbi.2010.12.011. Epub 2010 Dec 17.
10
Hypertrophic scarring and keloids: pathomechanisms and current and emerging treatment strategies.
Mol Med. 2011 Jan-Feb;17(1-2):113-25. doi: 10.2119/molmed.2009.00153. Epub 2010 Oct 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验