Suppr超能文献

采用亲水相互作用色谱法(HILIC)解析异构糖肽糖型

Resolving Isomeric Glycopeptide Glycoforms with Hydrophilic Interaction Chromatography (HILIC).

作者信息

Huang Yining, Nie Yongxin, Boyes Barry, Orlando Ron

机构信息

Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, USA;

College of Life Science, Shandong Agricultural University, Taian, Shandong Province, P.R. China; and.

出版信息

J Biomol Tech. 2016 Sep;27(3):98-104. doi: 10.7171/jbt.16-2703-003. Epub 2016 Aug 3.

Abstract

The ability to resolve glycans while attached to tryptic peptides would greatly facilitate glycoproteomics, as this would enable site-specific glycan characterization. Peptide/glycopeptide separations are typically performed using reversed-phase liquid chromatography (RPLC), where retention is driven by hydrophobic interaction. As the hydrophilic glycans do not interact significantly with the RPLC stationary phase, it is difficult to resolve glycopeptides that differ only in their glycan structure, even when these differences are large. Alternatively, glycans interact extensively with the stationary phases used in hydrophilic interaction chromatography (HILIC), and consequently, differences in glycan structure have profound chromatographic shifts in this chromatographic mode. Here, we evaluate HILIC for the separation of isomeric glycopeptide mixtures that have the same peptide backbone but isomeric glycans. Hydrophilic functional groups on both the peptide and the glycan interact with the HILIC stationary phase, and thus, changes to either of these moieties can alter the chromatographic behavior of a glycopeptide. The interactive processes permit glycopeptides to be resolved from each other based on differences in their amino acid sequences and/or their attached glycans. The separations of glycans in HILIC are sufficient to permit resolution of isomeric N-glycan structures, such as sialylated N-glycan isomers differing in α2-3 and α2-6 linkages, while these glycans remain attached to peptides.

摘要

在胰蛋白酶肽段上连接聚糖时解析聚糖的能力将极大地促进糖蛋白质组学研究,因为这将实现位点特异性聚糖表征。肽/糖肽分离通常使用反相液相色谱(RPLC)进行,其中保留作用由疏水相互作用驱动。由于亲水性聚糖与RPLC固定相的相互作用不显著,因此即使差异很大,也难以分离仅聚糖结构不同的糖肽。另外,聚糖与亲水作用色谱(HILIC)中使用的固定相有广泛相互作用,因此,在这种色谱模式下,聚糖结构的差异会导致显著的色谱峰位移。在此,我们评估HILIC用于分离具有相同肽主链但聚糖异构的异构糖肽混合物。肽和聚糖上的亲水性官能团都与HILIC固定相相互作用,因此,这两个部分中任何一个的变化都可能改变糖肽的色谱行为。这些相互作用过程使得糖肽能够根据其氨基酸序列和/或连接的聚糖的差异彼此分离。HILIC中聚糖的分离足以实现异构N-聚糖结构的分离,例如α2-3和α2-6连接不同的唾液酸化N-聚糖异构体,同时这些聚糖仍与肽相连。

相似文献

1
Resolving Isomeric Glycopeptide Glycoforms with Hydrophilic Interaction Chromatography (HILIC).
J Biomol Tech. 2016 Sep;27(3):98-104. doi: 10.7171/jbt.16-2703-003. Epub 2016 Aug 3.
6
Isomer separation of sialylated O- and N-linked glycopeptides using reversed-phase LC-MS/MS at high temperature.
J Chromatogr B Analyt Technol Biomed Life Sci. 2019 Mar 15;1110-1111:101-107. doi: 10.1016/j.jchromb.2019.02.015. Epub 2019 Feb 13.
8
Nano reversed phase versus nano hydrophilic interaction liquid chromatography on a chip in the analysis of hemopexin glycopeptides.
J Chromatogr A. 2017 Oct 13;1519:152-155. doi: 10.1016/j.chroma.2017.08.066. Epub 2017 Aug 26.
9
Isomeric separation of native N-glycans using nano zwitterionic- hydrophilic interaction liquid chromatography column.
J Chromatogr A. 2023 Aug 30;1705:464198. doi: 10.1016/j.chroma.2023.464198. Epub 2023 Jul 5.
10
It is all about the solvent: on the importance of the mobile phase for ZIC-HILIC glycopeptide enrichment.
Anal Bioanal Chem. 2017 Jan;409(2):529-538. doi: 10.1007/s00216-016-0051-6. Epub 2016 Dec 1.

引用本文的文献

1
Absolute Quantitation of Phosphopeptides and Glycopeptides Using Coulometric Mass Spectrometry.
ACS Meas Sci Au. 2025 Jul 18;5(4):559-571. doi: 10.1021/acsmeasuresciau.5c00047. eCollection 2025 Aug 20.
2
Optimization of glycopeptide enrichment techniques for the identification of clinical biomarkers.
Expert Rev Proteomics. 2024 Nov;21(11):431-462. doi: 10.1080/14789450.2024.2418491. Epub 2024 Oct 31.
3
LC-MS/MS of isomeric N-and O-glycopeptides on mesoporous graphitized carbon column.
Anal Chim Acta. 2024 Aug 15;1317:342907. doi: 10.1016/j.aca.2024.342907. Epub 2024 Jun 25.
4
Decoding the glycoproteome: a new frontier for biomarker discovery in cancer.
J Hematol Oncol. 2024 Mar 22;17(1):12. doi: 10.1186/s13045-024-01532-x.
5
O-Glycoproteomics Sample Preparation and Analysis Using NanoHPLC and Tandem MS.
Methods Mol Biol. 2024;2762:281-290. doi: 10.1007/978-1-0716-3666-4_17.
7
Glycoproteomics-Compatible MS/MS-Based Quantification of Glycopeptide Isomers.
Anal Chem. 2023 Jun 27;95(25):9605-9614. doi: 10.1021/acs.analchem.3c01319. Epub 2023 Jun 15.
9
Proteomics-based mass spectrometry profiling of SARS-CoV-2 infection from human nasopharyngeal samples.
Mass Spectrom Rev. 2024 Jan-Feb;43(1):193-229. doi: 10.1002/mas.21813. Epub 2022 Sep 29.

本文引用的文献

1
Glycosylation in cancer: mechanisms and clinical implications.
Nat Rev Cancer. 2015 Sep;15(9):540-55. doi: 10.1038/nrc3982. Epub 2015 Aug 20.
3
The determination of glycopeptides by liquid chromatography/mass spectrometry with collision-induced dissociation.
J Am Soc Mass Spectrom. 1992 Nov;3(8):804-14. doi: 10.1016/1044-0305(92)80003-4.
4
Glycoproteomic analysis of antibodies.
Mol Cell Proteomics. 2013 Apr;12(4):856-65. doi: 10.1074/mcp.R112.026005. Epub 2013 Jan 16.
5
Comprehensive native glycan profiling with isomer separation and quantitation for the discovery of cancer biomarkers.
Analyst. 2011 Sep 21;136(18):3663-71. doi: 10.1039/c1an15093f. Epub 2011 Jul 21.
7
From carbohydrate leads to glycomimetic drugs.
Nat Rev Drug Discov. 2009 Aug;8(8):661-77. doi: 10.1038/nrd2852. Epub 2009 Jul 24.
8
Mass spectrometry and the emerging field of glycomics.
Chem Biol. 2008 Sep 22;15(9):881-92. doi: 10.1016/j.chembiol.2008.07.016.
10
Glycosylation in cellular mechanisms of health and disease.
Cell. 2006 Sep 8;126(5):855-67. doi: 10.1016/j.cell.2006.08.019.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验