Janardhanraj S, Jagadeesh G
Department of Aerospace Engineering, Indian Institute of Science, Bangalore 560012, India.
Rev Sci Instrum. 2016 Aug;87(8):085114. doi: 10.1063/1.4960961.
A novel concept to generate miniature shockwaves in a safe, repeatable, and controllable manner in laboratory confinements using an in situ oxyhydrogen generator has been proposed and demonstrated. This method proves to be more advantageous than existing methods because there is flexibility to vary strength of the shockwave, there is no need for storage of high pressure gases, and there is minimal waste disposal. The required amount of oxyhydrogen mixture is generated using alkaline electrolysis that produces hydrogen and oxygen gases in stoichiometric quantity. The rate of oxyhydrogen mixture production for the newly designed oxyhydrogen generator is found to be around 8 ml/s experimentally. The oxyhydrogen generator is connected to the driver section of a specially designed 10 mm square miniature shock tube assembly. A numerical code that uses CANTERA software package is used to predict the properties of the driver gas in the miniature shock tube. This prediction along with the 1-D shock tube theory is used to calculate the properties of the generated shockwave and matches reasonably well with the experimentally obtained values for oxyhydrogen mixture fill pressures less than 2.5 bars. The miniature shock tube employs a modified tri-clover clamp assembly to facilitate quick changing of diaphragm and replaces the more cumbersome nut and bolt system of fastening components. The versatile nature of oxyhydrogen detonation-driven miniature shock tube opens up new horizons for shockwave-assisted interdisciplinary applications.
提出并展示了一种新颖的概念,即利用原位氢氧发生器在实验室环境中以安全、可重复和可控的方式产生微型冲击波。该方法被证明比现有方法更具优势,因为它可以灵活改变冲击波的强度,无需储存高压气体,并且废物处理量最小。所需的氢氧混合物通过碱性电解产生,该电解过程按化学计量比产生氢气和氧气。通过实验发现,新设计的氢氧发生器产生氢氧混合物的速率约为8毫升/秒。氢氧发生器连接到专门设计的10毫米见方的微型激波管组件的驱动部分。使用CANTERA软件包的数值代码用于预测微型激波管中驱动气体的特性。该预测与一维激波管理论一起用于计算所产生冲击波的特性,并且对于氢氧混合物填充压力小于2.5巴的情况,与实验获得的值相当吻合。微型激波管采用改进的三叶草夹组件,便于快速更换隔膜,并取代了更为繁琐的螺母和螺栓紧固组件系统。氢氧爆轰驱动的微型激波管的多功能性为冲击波辅助的跨学科应用开辟了新的前景。