Suppr超能文献

PRED-TMBB2:改进的拓扑结构预测和β-桶状外膜蛋白检测

PRED-TMBB2: improved topology prediction and detection of beta-barrel outer membrane proteins.

作者信息

Tsirigos Konstantinos D, Elofsson Arne, Bagos Pantelis G

机构信息

Department of Biochemistry and Biophysics, Science for Life Laboratory, Swedish E-Science Research Center, Stockholm University, 17121 Solna, Sweden Department of Computer Science and Biomedical Informatics, University of Thessaly, 35100 Lamia, Greece.

Department of Biochemistry and Biophysics, Science for Life Laboratory, Swedish E-Science Research Center, Stockholm University, 17121 Solna, Sweden.

出版信息

Bioinformatics. 2016 Sep 1;32(17):i665-i671. doi: 10.1093/bioinformatics/btw444.

Abstract

MOTIVATION

The PRED-TMBB method is based on Hidden Markov Models and is capable of predicting the topology of beta-barrel outer membrane proteins and discriminate them from water-soluble ones. Here, we present an updated version of the method, PRED-TMBB2, with several newly developed features that improve its performance. The inclusion of a properly defined end state allows for better modeling of the beta-barrel domain, while different emission probabilities for the adjacent residues in strands are used to incorporate knowledge concerning the asymmetric amino acid distribution occurring there. Furthermore, the training was performed using newly developed algorithms in order to optimize the labels of the training sequences. Moreover, the method is retrained on a larger, non-redundant dataset which includes recently solved structures, and a newly developed decoding method was added to the already available options. Finally, the method now allows the incorporation of evolutionary information in the form of multiple sequence alignments.

RESULTS

The results of a strict cross-validation procedure show that PRED-TMBB2 with homology information performs significantly better compared to other available prediction methods. It yields 76% in correct topology predictions and outperforms the best available predictor by 7%, with an overall SOV of 0.9. Regarding detection of beta-barrel proteins, PRED-TMBB2, using just the query sequence as input, achieves an MCC value of 0.92, outperforming even predictors designed for this task and are much slower.

AVAILABILITY AND IMPLEMENTATION

The method, along with all datasets used, is freely available for academic users at http://www.compgen.org/tools/PRED-TMBB2 CONTACT: pbagos@compgen.org.

摘要

动机

PRED-TMBB方法基于隐马尔可夫模型,能够预测β-桶状外膜蛋白的拓扑结构,并将其与水溶性蛋白区分开来。在此,我们展示了该方法的更新版本PRED-TMBB2,它具有几个新开发的特性,可提高其性能。包含一个恰当定义的终止状态能够更好地对β-桶状结构域进行建模,同时对链中相邻残基使用不同的发射概率来纳入有关那里出现的不对称氨基酸分布的知识。此外,使用新开发的算法进行训练,以优化训练序列的标签。而且,该方法在一个更大的、非冗余的数据集上重新进行了训练,该数据集包括最近解析的结构,并且在已有选项中添加了一种新开发的解码方法。最后,该方法现在允许以多序列比对的形式纳入进化信息。

结果

严格交叉验证程序的结果表明,与其他可用的预测方法相比,具有同源性信息的PRED-TMBB2性能显著更好。它在正确拓扑预测方面的准确率为76%,比最佳可用预测器高出7%,总体SOV为0.9。关于β-桶状蛋白的检测,仅将查询序列作为输入的PRED-TMBB2,MCC值达到0.92,甚至优于为此任务设计的预测器,且速度要快得多。

可用性和实现方式

该方法以及所有使用的数据集可在http://www.compgen.org/tools/PRED-TMBB2上免费提供给学术用户。联系方式:pbagos@compgen.org

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验