Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, Washington, DC, USA.
Solgate GmbH, IST Park, Klosterneuburg, Austria.
mSphere. 2022 Oct 26;7(5):e0022322. doi: 10.1128/msphere.00223-22. Epub 2022 Sep 7.
Electromicrobiology can be used to understand extracellular electron uptake in previously undescribed chemolithotrophs. Enrichment and characterization of the uncultivated electroautotroph " Tenderia electrophaga" using electromicrobiology led to the designation of the order Representative metagenome-assembled genomes (MAGs) have been identified in a number of environmental surveys, yet a comprehensive characterization of conserved genes for extracellular electron uptake has thus far not been conducted. Using comparative genomics, we identified conserved orthologous genes within the and nearest-neighbor orders important for extracellular electron uptake based on a previously proposed pathway from " Tenderia electrophaga." The contained a conserved cluster we designated , which encodes proteins containing features that would enable transport of extracellular electrons to cytoplasmic membrane-bound energy-transducing complexes such as two conserved cytochrome oxidases. For example, UetJ is predicted to be an extracellular undecaheme -type cytochrome that forms a heme wire. We also identified clusters of genes predicted to facilitate assembly and maturation of electron transport proteins, as well as cellular attachment to surfaces. Autotrophy among the is supported by the presence of carbon fixation and stress response pathways that could allow cellular growth by extracellular electron uptake. Key differences between the and other known neutrophilic iron oxidizers were revealed, including very few Cyc2 genes in the . Our results reveal a possible conserved pathway for extracellular electron uptake and suggest that the have an ecological role in coupling metal or mineral redox chemistry and the carbon cycle in marine and brackish sediments. Chemolithotrophic bacteria capable of extracellular electron uptake to drive energy metabolism and CO fixation are known as electroautotrophs. The recently described order contains the uncultivated electroautotroph " Tenderia electrophaga." The " Tenderia electrophaga" genome contains genes proposed to make up a previously undescribed extracellular electron uptake pathway. Here, we use comparative genomics to show that this pathway is well conserved among spp. recovered by metagenome-assembled genomes. This conservation extends to near neighbors of the but not to other well-studied chemolithotrophs, including iron and sulfur oxidizers, indicating that these genes may be useful markers of growth using insoluble extracellular electron donors. Our findings suggest that extracellular electron uptake and electroautotrophy may be pervasive among the , and the geographic locations from which metagenome-assembled genomes were recovered offer clues to their natural ecological niche.
电微生物学可用于了解以前未描述的化能自养生物的细胞外电子摄取。使用电微生物学对未培养的电自养生物“Tenderia electrophaga”进行富集和表征,导致指定了一个新的目。
在许多环境调查中已经鉴定出代表 的宏基因组组装基因组 (MAGs),但迄今为止尚未对细胞外电子摄取的保守基因进行全面表征。使用比较基因组学,我们根据先前从“Tenderia electrophaga”提出的途径,确定了在 和最近的邻居目中对细胞外电子摄取很重要的保守直系同源基因。
包含我们指定为 的保守簇,该簇编码具有使细胞外电子传输到细胞质膜结合的能量转换复合物(如两个保守的细胞色素 c 氧化酶)的特征的蛋白质。例如,UetJ 被预测为一种细胞外十一血红素型细胞色素,形成血红素线。我们还鉴定了有助于电子传递蛋白组装和成熟以及细胞附着到表面的基因簇。该目中的自养作用得到了碳固定和应激反应途径的支持,这些途径可以通过细胞外电子摄取使细胞生长。
与其他已知的嗜中性铁氧化菌相比,该目中的关键差异在于 中很少有 Cyc2 基因。我们的结果揭示了细胞外电子摄取的可能保守途径,并表明在海洋和半咸沉积物中,该目在耦合金属或矿物氧化还原化学和碳循环方面具有生态作用。
能够进行细胞外电子摄取以驱动能量代谢和 CO2 固定的化能自养细菌被称为电自养生物。最近描述的目 包含未培养的电自养生物“Tenderia electrophaga”。“Tenderia electrophaga”基因组包含被提议组成以前未描述的细胞外电子摄取途径的基因。在这里,我们使用比较基因组学表明,该途径在通过宏基因组组装基因组回收的 spp. 中得到很好的保守。这种保守性扩展到 的近邻,但不扩展到其他研究较多的化能自养生物,包括铁和硫氧化剂,这表明这些基因可能是使用不溶性细胞外电子供体生长的有用标记物。
我们的发现表明,细胞外电子摄取和电自养作用可能在 中普遍存在,而宏基因组组装基因组回收的地理位置为其自然生态位提供了线索。