Sánchez-Taltavull Daniel, MacLeod Matthew, Perkins Theodore J
Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa K1H8L6, Canada.
Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa K1H8L6, Canada Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa K1H8M5, Canada.
Bioinformatics. 2016 Sep 1;32(17):i790-i797. doi: 10.1093/bioinformatics/btw472.
In competitive endogenous RNA (ceRNA) networks, different mRNAs targeted by the same miRNA can 'cross-talk' by absorbing miRNAs and relieving repression on the other mRNAs. This creates correlations in mRNA expression even without direct interaction. Most previous theoretical study of cross-talk has focused on correlations in stochastic fluctuations of mRNAs around their steady state values. However, the experimentally known examples of cross-talk do not involve single-cell fluctuations, but rather bulk tissue-level changes between conditions, such as due to differentiation or disease. In our study, we quantify for the first time both fluctuational and cross-conditional cross-talk in chemical kinetic models of miRNA-mRNA interaction networks. We study the parameter regions under which these different types of cross-talk arise, and how they are affected by network structure.
We find that while a network may support both fluctuational and cross-conditional cross-talk, the parameter regimes under which each type of cross-talk tends to emerge are rather different. Consistent with previous studies, fluctuational cross-talk occurs when miRNA and mRNA expression levels are 'balanced', whereas cross-conditional cross-talk tends to emerge when average miRNA levels are high and average mRNA levels are low. Conversely, cross-conditional miRNA cross-talk-a little-discussed phenomenon-is greatest when miRNA levels are low and mRNA levels are high. We show that the parameter ranges where cross-talk is maximized can, to some degree, be predicted based on network structure. Indeed, we find that the dominant effect of network structure on correlations happens through the effect of network structure on the overall balance between miRNA and mRNA expression. However, it is not the only effect, as we find that the density of connections between miRNAs and mRNAs in larger networks increases cross-talk without altering the expression balance.
Our results deepen the theoretical understanding of cross-talk in ceRNA networks, and have implications for the experimental identification of ceRNA cross-talk phenomena.
Simulation software available upon request.
在竞争性内源RNA(ceRNA)网络中,同一miRNA靶向的不同mRNA可以通过吸收miRNA并解除对其他mRNA的抑制来“相互作用”。即使没有直接相互作用,这也会在mRNA表达中产生相关性。以前大多数关于相互作用的理论研究都集中在mRNA围绕其稳态值的随机波动中的相关性。然而,实验中已知的相互作用例子并不涉及单细胞波动,而是不同条件之间的组织水平变化,例如由于分化或疾病导致的变化。在我们的研究中,我们首次在miRNA-mRNA相互作用网络的化学动力学模型中量化了波动和跨条件相互作用。我们研究了出现这些不同类型相互作用的参数区域,以及它们如何受到网络结构的影响。
我们发现,虽然一个网络可能同时支持波动和跨条件相互作用,但每种类型相互作用倾向于出现的参数范围相当不同。与先前的研究一致;当miRNA和mRNA表达水平“平衡”时,会发生波动相互作用,而当平均miRNA水平高且平均mRNA水平低时,跨条件相互作用倾向于出现。相反,当miRNA水平低且mRNA水平高时,跨条件miRNA相互作用(一种很少被讨论的现象)最为显著。我们表明,相互作用最大化的参数范围在一定程度上可以根据网络结构进行预测。事实上,我们发现网络结构对相关性的主要影响是通过网络结构对miRNA和mRNA表达之间总体平衡的影响来实现的。然而,这不是唯一的影响,因为我们发现较大网络中miRNA和mRNA之间的连接密度会增加相互作用,而不会改变表达平衡。
我们的结果加深了对ceRNA网络中相互作用的理论理解,并对ceRNA相互作用现象的实验鉴定具有启示意义。
可根据要求提供模拟软件。