Département de Chimie, Université de Montréal , Montréal, Québec H3C 3J7, Canada.
Département de Chimie, Université du Québec à Montréal , Montréal, Québec H3C 3P8, Canada.
Biomacromolecules. 2016 Oct 10;17(10):3277-3286. doi: 10.1021/acs.biomac.6b01010. Epub 2016 Sep 13.
The byssus that anchors mussels to solid surfaces is a protein-based material combining strength and toughness as well as a self-healing ability. These exceptional mechanical properties are explained in part by the presence of metal ions forming sacrificial bonds with amino acids. In this study, we show that the properties of hydrogel films prepared from a byssus protein hydrolyzate (BPH) can also be improved following the biomimetic formation of sacrificial bonds. Strengthening and toughening of the materials are both observed when treating films with multivalent ions (Ca or Fe) or at the BPH isoelectric point (pI) as a result of the formation of metal-ligand bonds and salt bridges, respectively. These treatments also provide a self-healing behavior to the films during recovery time following a deformation. While pI and Ca treatments have a similar but limited pH-dependent effect, the modulus, strength, and toughness of the films increase largely with Fe concentration and reach much higher values. The affinity of Fe with multiple amino acid ligands, as shown by vibrational spectroscopy, and the more covalent nature of this interaction can explain these observations. Thus, a judicious choice of treatments on polyampholyte protein-based materials enables control of their mechanical performance and self-healing behavior through the strategic exploitation of reversible sacrificial bonds.
贻贝用于将自身固定在固体表面的足丝是一种基于蛋白质的材料,它兼具强度和韧性以及自我修复能力。这些特殊的机械性能部分归因于金属离子与氨基酸形成牺牲键。在这项研究中,我们表明,通过仿生形成牺牲键,也可以改善由贻贝蛋白水解物 (BPH) 制备的水凝胶膜的性能。当用多价离子 (Ca 或 Fe) 处理薄膜或在 BPH 等电点 (pI) 处理时,由于形成金属配体键和盐桥,材料的强度和韧性均得到增强。这些处理还为薄膜在变形后的恢复时间内提供了自修复行为。尽管 pI 和 Ca 处理具有相似但有限的 pH 依赖性效应,但薄膜的模量、强度和韧性随 Fe 浓度的增加而大幅增加,并达到更高的值。振动光谱表明,Fe 与多种氨基酸配体的亲和力以及这种相互作用的更共价性质可以解释这些观察结果。因此,通过对两性聚电解质蛋白质材料进行合理的处理选择,可以通过对可逆牺牲键的策略性利用来控制其机械性能和自修复行为。