School of Advanced Materials, Peking University Shenzhen Graduate School , Shenzhen 518055, China.
U.S. Army Research Laboratory , Adelphi, Maryland 20783, United States.
Nano Lett. 2016 Oct 12;16(10):6357-6363. doi: 10.1021/acs.nanolett.6b02742. Epub 2016 Sep 7.
Layered transition-metal oxides (Li[NiMnCo]O, NMC, or NMCxyz) due to their poor stability when cycled at a high operating voltage (>4.5 V) have limited their practical applications in industry. Earlier researches have identified Mn(II)-dissolution and some parasitic reactions between NMC surface and electrolyte, especially when NMC is charged to a high potential, as primarily factors responsible for the fading. In our previous work, we have achieved a capacity of NMC active material close to theoretical value and optimized its cycling performance by a depolarized carbon nanotubes (CNTs) network and an unique "pre-lithiation process" that generates an in situ organic coating (∼40 nm) to prevent Mn(II) dissolution and minimize the parasitic reactions. Unfortunately, this organic coating is not durable enough during a long-term cycling when the cathode operates at a high potential (>4.5 V). This work attempts to improve the surface protection of the NMC532 particles by applying an active inorganic coating consisting of nanosized- and crystal-orientated LiFePO (LFP) (about 50 nm, exposed (010) face) to generate a core-shell nanostructure of Li(NiMnCo)O@LiFePO. Transmission electron microscopy (TEM) and etching X-ray photoelectron spectroscopy have confirmed an intimate contact coating (about 50 nm) between the original structure of NMC and LFP single-particle with atomic interdiffusion at the core-shell interface, and an array of interconnected aligned Li tunnels are observed at the interface by cross-sectional high-resolution TEM, which were formed by ball-milling and then strictly controlling the temperature below 100 °C. Batteries based on this modified NMC cathode material show a high reversible capacity when cycled between 3.0 and 4.6 V during a long-term cycling.
由于在高工作电压(>4.5 V)下循环时稳定性差,分层过渡金属氧化物(Li[NiMnCo]O,NMC 或 NMCxyz)限制了其在工业中的实际应用。早期的研究已经确定 Mn(II)-溶解和 NMC 表面与电解质之间的一些寄生反应,特别是当 NMC 被充电到高电位时,是导致容量衰减的主要因素。在我们之前的工作中,我们通过去极化碳纳米管(CNTs)网络和独特的“预锂化过程”实现了接近理论值的 NMC 活性材料的容量,并优化了其循环性能,该过程生成了一种原位有机涂层(约 40nm),以防止 Mn(II)溶解并最大程度地减少寄生反应。不幸的是,当阴极在高电位(>4.5 V)下运行时,这种有机涂层在长期循环中不够耐用。这项工作试图通过应用由纳米尺寸和晶体定向的 LiFePO(LFP)组成的活性无机涂层来改善 NMC532 颗粒的表面保护(约 50nm,暴露(010)面),以生成 Li(NiMnCo)O@LiFePO 的核壳纳米结构。透射电子显微镜(TEM)和刻蚀 X 射线光电子能谱证实了 NMC 和 LFP 单颗粒原始结构之间的紧密接触涂层(约 50nm),并且在核壳界面处原子互扩散,通过横截面高分辨率 TEM 观察到界面处存在一系列相互连接的对齐的 Li 隧道,这些隧道是通过球磨形成的,然后严格控制温度低于 100°C。基于这种改性 NMC 阴极材料的电池在长期循环中在 3.0 和 4.6 V 之间循环时显示出高可逆容量。