Suppr超能文献

解码心脏成熟过程中的长链非编码RNA:功能发现路线图

Decoding the Long Noncoding RNA During Cardiac Maturation: A Roadmap for Functional Discovery.

作者信息

Touma Marlin, Kang Xuedong, Zhao Yan, Cass Ashley A, Gao Fuying, Biniwale Reshma, Coppola Giovanni, Xiao Xinshu, Reemtsen Brian, Wang Yibin

机构信息

The Children's Discovery and Innovation Institute (CDI), Department of Pediatrics, University of California, Los Angeles, CA.

Cardiovascular Research Laboratory, University of California, Los Angeles, CA.

出版信息

Circ Cardiovasc Genet. 2016 Oct;9(5):395-407. doi: 10.1161/CIRCGENETICS.115.001363. Epub 2016 Sep 2.

Abstract

BACKGROUND

Cardiac maturation during perinatal transition of heart is critical for functional adaptation to hemodynamic load and nutrient environment. Perturbation in this process has major implications in congenital heart defects. Transcriptome programming during perinatal stages is an important information but incomplete in current literature, particularly, the expression profiles of the long noncoding RNAs (lncRNAs) are not fully elucidated.

METHODS AND RESULTS

From comprehensive analysis of transcriptomes derived from neonatal mouse heart left and right ventricles, a total of 45 167 unique transcripts were identified, including 21 916 known and 2033 novel lncRNAs. Among these lncRNAs, 196 exhibited significant dynamic regulation along maturation process. By implementing parallel weighted gene co-expression network analysis of mRNA and lncRNA data sets, several lncRNA modules coordinately expressed in a developmental manner similar to protein coding genes, while few lncRNAs revealed chamber-specific patterns. Out of 2262 lncRNAs located within 50 kb of protein coding genes, 5% significantly correlate with the expression of their neighboring genes. The impact of Ppp1r1b-lncRNA on the corresponding partner gene Tcap was validated in cultured myoblasts. This concordant regulation was also conserved in human infantile hearts. Furthermore, the Ppp1r1b-lncRNA/Tcap expression ratio was identified as a molecular signature that differentiated congenital heart defect phenotypes.

CONCLUSIONS

The study provides the first high-resolution landscape on neonatal cardiac lncRNAs and reveals their potential interaction with mRNA transcriptome during cardiac maturation. Ppp1r1b-lncRNA was identified as a regulator of Tcap expression, with dynamic interaction in postnatal cardiac development and congenital heart defects.

摘要

背景

心脏围产期转变过程中的心脏成熟对于功能适应血流动力学负荷和营养环境至关重要。这一过程中的扰动对先天性心脏缺陷具有重大影响。围产期阶段的转录组编程是一项重要信息,但目前文献尚不完整,特别是长链非编码RNA(lncRNA)的表达谱尚未完全阐明。

方法与结果

通过对新生小鼠心脏左、右心室转录组的综合分析,共鉴定出45167个独特转录本,包括21916个已知的和2033个新的lncRNA。在这些lncRNA中,196个在成熟过程中表现出显著的动态调控。通过对mRNA和lncRNA数据集进行并行加权基因共表达网络分析,发现几个lncRNA模块以与蛋白质编码基因相似的发育方式协调表达,而少数lncRNA显示出特定腔室模式。在位于蛋白质编码基因50 kb范围内的2262个lncRNA中,5%与邻近基因的表达显著相关。Ppp1r1b-lncRNA对相应伙伴基因Tcap的影响在培养的成肌细胞中得到验证。这种协同调控在人类婴儿心脏中也保守存在。此外,Ppp1r1b-lncRNA/Tcap表达比率被确定为区分先天性心脏缺陷表型 的分子特征。

结论

本研究提供了首个关于新生心脏lncRNA的高分辨率图谱,并揭示了它们在心脏成熟过程中与mRNA转录组的潜在相互作用。Ppp1r1b-lncRNA被确定为Tcap表达的调节因子,在出生后心脏发育和先天性心脏缺陷中具有动态相互作用。

相似文献

1
Decoding the Long Noncoding RNA During Cardiac Maturation: A Roadmap for Functional Discovery.
Circ Cardiovasc Genet. 2016 Oct;9(5):395-407. doi: 10.1161/CIRCGENETICS.115.001363. Epub 2016 Sep 2.
3
Gene-environment regulation of chamber-specific maturation during hypoxemic perinatal circulatory transition.
J Mol Med (Berl). 2020 Jul;98(7):1009-1020. doi: 10.1007/s00109-020-01933-8. Epub 2020 Jun 12.
4
Differential Expression of Long Noncoding RNAs During Cardiac Allograft Rejection.
Transplantation. 2017 Jan;101(1):83-91. doi: 10.1097/TP.0000000000001463.
5
The Long Noncoding RNA Landscape of the Mouse Eye.
Invest Ophthalmol Vis Sci. 2017 Dec 1;58(14):6308-6317. doi: 10.1167/iovs.17-22178.
9
Expression signature of lncRNAs and their potential roles in cardiac fibrosis of post-infarct mice.
Biosci Rep. 2016 Jun 3;36(3). doi: 10.1042/BSR20150278. Print 2016 Jul.
10
Transcriptome profiling of lncRNA and co-expression networks in esophageal squamous cell carcinoma by RNA sequencing.
Tumour Biol. 2016 Oct;37(10):13091-13100. doi: 10.1007/s13277-016-5227-3. Epub 2016 Jul 23.

引用本文的文献

1
Cardiovascular disease-associated non-coding variants disrupt GATA4-DNA binding and regulatory functions.
HGG Adv. 2025 Apr 10;6(2):100415. doi: 10.1016/j.xhgg.2025.100415. Epub 2025 Feb 12.
2
Importance of long non-coding RNAs in the pathogenesis, diagnosis, and treatment of myocardial infarction.
Int J Cardiol Heart Vasc. 2024 Oct 17;55:101529. doi: 10.1016/j.ijcha.2024.101529. eCollection 2024 Dec.
3
Posttranscriptional Regulation by Proteins and Noncoding RNAs.
Adv Exp Med Biol. 2024;1441:313-339. doi: 10.1007/978-3-031-44087-8_17.
5
Single-cell transcriptional landscape of long non-coding RNAs orchestrating mouse heart development.
Cell Death Dis. 2023 Dec 18;14(12):841. doi: 10.1038/s41419-023-06296-9.
6
Right Ventricle and Epigenetics: A Systematic Review.
Cells. 2023 Nov 23;12(23):2693. doi: 10.3390/cells12232693.
7
Mapping Chromatin Occupancy of Genome-Wide Using Chromatin Isolation by RNA Purification (ChIRP)-seq.
bioRxiv. 2023 Nov 5:2023.11.04.565657. doi: 10.1101/2023.11.04.565657.
8
ASXL3 gene mutations inhibit cell proliferation and promote cell apoptosis in mouse cardiomyocytes by upregulating lncRNA NONMMUT063967.2.
Biochem Biophys Rep. 2023 Jun 27;35:101505. doi: 10.1016/j.bbrep.2023.101505. eCollection 2023 Sep.
9
Cmarr/miR-540-3p axis promotes cardiomyocyte maturation transition by orchestrating Dtna expression.
Mol Ther Nucleic Acids. 2022 Jul 31;29:481-497. doi: 10.1016/j.omtn.2022.07.022. eCollection 2022 Sep 13.
10
Weighted Gene Coexpression Network Analysis Identifies Crucial Genes Involved in Coronary Atherosclerotic Heart Disease.
Dis Markers. 2022 Aug 2;2022:6971238. doi: 10.1155/2022/6971238. eCollection 2022.

本文引用的文献

3
A peptide encoded by a transcript annotated as long noncoding RNA enhances SERCA activity in muscle.
Science. 2016 Jan 15;351(6270):271-5. doi: 10.1126/science.aad4076.
4
Parkin-mediated mitophagy directs perinatal cardiac metabolic maturation in mice.
Science. 2015 Dec 4;350(6265):aad2459. doi: 10.1126/science.aad2459. Epub 2015 Dec 3.
5
Integrative Analysis of the Developing Postnatal Mouse Heart Transcriptome.
PLoS One. 2015 Jul 22;10(7):e0133288. doi: 10.1371/journal.pone.0133288. eCollection 2015.
6
Physiology of the fetal and transitional circulation.
Semin Fetal Neonatal Med. 2015 Aug;20(4):210-6. doi: 10.1016/j.siny.2015.04.003. Epub 2015 Apr 25.
7
Identification of novel long noncoding RNAs underlying vertebrate cardiovascular development.
Circulation. 2015 Apr 7;131(14):1278-1290. doi: 10.1161/CIRCULATIONAHA.114.013303. Epub 2015 Mar 4.
8
A long noncoding RNA protects the heart from pathological hypertrophy.
Nature. 2014 Oct 2;514(7520):102-106. doi: 10.1038/nature13596. Epub 2014 Aug 10.
9
Epigenetic coordination of embryonic heart transcription by dynamically regulated long noncoding RNAs.
Proc Natl Acad Sci U S A. 2014 Aug 19;111(33):12264-9. doi: 10.1073/pnas.1410622111. Epub 2014 Jul 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验