Chaves M M, Costa J M, Zarrouk O, Pinheiro C, Lopes C M, Pereira J S
Plant Molecular Physiology Laboratory, ITQBNOVA, Universidade Nova de Lisboa, Oeiras, Portugal.
Plant Molecular Physiology Laboratory, ITQBNOVA, Universidade Nova de Lisboa, Oeiras, Portugal; LEAF, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, Lisboa, Portugal.
Plant Sci. 2016 Oct;251:54-64. doi: 10.1016/j.plantsci.2016.06.015. Epub 2016 Jun 22.
Stomatal regulation of leaf gas exchange with the atmosphere is a key process in plant adaptation to the environment, particularly in semi-arid regions with high atmospheric evaporative demand. Development of stomata, integrating internal signaling and environmental cues sets the limit for maximum diffusive capacity of stomata, through size and density and is under a complex genetic control, thus providing multiple levels of regulation. Operational stomatal conductance to water vapor and CO2 results from feed-back and/or feed-forward mechanisms and is the end-result of a plethora of signals originated in leaves and/or in roots at each moment. CO2 assimilation versus water vapor loss, proposed to be the subject of optimal regulation, is species dependent and defines the water use efficiency (WUE). WUE has been a topic of intense research involving areas from genetics to physiology. In crop plants, especially in semi-arid regions, the question that arises is how the compromise of reducing transpiration to save water will impact on plant performance through leaf temperature. Indeed, plant transpiration by providing evaporative cooling, is a major component of the leaf energy balance. In this paper we discuss the dilemma of 'saving water or being cool' bringing about recent findings from molecular genetics, to development and physiology of stomata. The question of 'how relevant is screening for high/low WUE in crops for semi-arid regions, where drought and heat co-occur' is discussed.
气孔对叶片与大气之间气体交换的调节是植物适应环境的关键过程,在大气蒸发需求高的半干旱地区尤为如此。气孔的发育整合了内部信号和环境线索,通过大小和密度设定了气孔最大扩散能力的限度,并且受到复杂的基因控制,从而提供了多层次的调节。水蒸气和二氧化碳的有效气孔导度源于反馈和/或前馈机制,是每时每刻源自叶片和/或根部的大量信号的最终结果。二氧化碳同化与水蒸气损失的关系被认为是最佳调节的主题,它因物种而异,并定义了水分利用效率(WUE)。水分利用效率一直是一个深入研究的课题,涉及从遗传学到生理学等多个领域。在农作物中,尤其是在半干旱地区,出现的问题是,通过降低蒸腾作用来节水的这种权衡如何通过叶片温度影响植物性能。实际上,植物蒸腾作用通过提供蒸发冷却,是叶片能量平衡的一个主要组成部分。在本文中,我们讨论了“节水还是保持凉爽”这一两难困境,并介绍了从分子遗传学、气孔发育到生理学的最新研究成果。还讨论了“在干旱和高温并存的半干旱地区,筛选作物高/低水分利用效率的相关性如何”这一问题。