Suppr超能文献

临床笔记中指代消解的无限混合模型。

An Infinite Mixture Model for Coreference Resolution in Clinical Notes.

作者信息

Liu Sijia, Liu Hongfang, Chaudhary Vipin, Li Dingcheng

机构信息

University at Buffalo, the State University of New York, Buffalo, NY;

Mayo Clinic, Rochester, MN.

出版信息

AMIA Jt Summits Transl Sci Proc. 2016 Jul 22;2016:428-37. eCollection 2016.

Abstract

It is widely acknowledged that natural language processing is indispensable to process electronic health records (EHRs). However, poor performance in relation detection tasks, such as coreference (linguistic expressions pertaining to the same entity/event) may affect the quality of EHR processing. Hence, there is a critical need to advance the research for relation detection from EHRs. Most of the clinical coreference resolution systems are based on either supervised machine learning or rule-based methods. The need for manually annotated corpus hampers the use of such system in large scale. In this paper, we present an infinite mixture model method using definite sampling to resolve coreferent relations among mentions in clinical notes. A similarity measure function is proposed to determine the coreferent relations. Our system achieved a 0.847 F-measure for i2b2 2011 coreference corpus. This promising results and the unsupervised nature make it possible to apply the system in big-data clinical setting.

摘要

人们普遍认为,自然语言处理对于处理电子健康记录(EHR)不可或缺。然而,在关系检测任务(如共指消解,即与同一实体/事件相关的语言表达)方面表现不佳,可能会影响电子健康记录处理的质量。因此,迫切需要推进从电子健康记录中进行关系检测的研究。大多数临床共指消解系统基于监督机器学习或基于规则的方法。对人工标注语料库的需求阻碍了此类系统在大规模场景中的应用。在本文中,我们提出了一种使用确定性采样的无限混合模型方法,以解决临床笔记中提及内容之间的共指关系。提出了一种相似性度量函数来确定共指关系。我们的系统在i2b2 2011共指语料库上的F值为0.847。这一有前景的结果以及无监督的特性使得该系统能够应用于大数据临床场景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d987/5009297/5e0d80129f36/2370111f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验