Weinberger Oliver, Winter Lukas, Dieringer Matthias A, Els Antje, Oezerdem Celal, Rieger Jan, Kuehne Andre, Cassara Antonino M, Pfeiffer Harald, Wetterling Friedrich, Niendorf Thoralf
Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrueck Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.
Experimental and Clinical Research Center (ECRC), a joint cooperation between the Charité Medical Faculty and the Max Delbrueck Center for Molecular Medicine, Berlin, Germany.
PLoS One. 2016 Sep 6;11(9):e0161863. doi: 10.1371/journal.pone.0161863. eCollection 2016.
The purpose of this study was to demonstrate the feasibility and efficiency of cardiac MR at 3 Tesla using local four-channel RF coil transmission and benchmark it against large volume body RF coil excitation.
Electromagnetic field simulations are conducted to detail RF power deposition, transmission field uniformity and efficiency for local and body RF coil transmission. For both excitation regimes transmission field maps are acquired in a human torso phantom. For each transmission regime flip angle distributions and blood-myocardium contrast are examined in a volunteer study of 12 subjects. The feasibility of the local transceiver RF coil array for cardiac chamber quantification at 3 Tesla is demonstrated.
Our simulations and experiments demonstrate that cardiac MR at 3 Tesla using four-channel surface RF coil transmission is competitive versus current clinical CMR practice of large volume body RF coil transmission. The efficiency advantage of the 4TX/4RX setup facilitates shorter repetition times governed by local SAR limits versus body RF coil transmission at whole-body SAR limit. No statistically significant difference was found for cardiac chamber quantification derived with body RF coil versus four-channel surface RF coil transmission. Our simulation also show that the body RF coil exceeds local SAR limits by a factor of ~2 when driven at maximum applicable input power to reach the whole-body SAR limit.
Pursuing local surface RF coil arrays for transmission in cardiac MR is a conceptually appealing alternative to body RF coil transmission, especially for patients with implants.
本研究的目的是证明在3特斯拉场强下使用局部四通道射频线圈传输进行心脏磁共振成像(MRI)的可行性和效率,并将其与大容积体部射频线圈激发进行对比。
进行电磁场模拟,以详细分析局部和体部射频线圈传输的射频功率沉积、传输场均匀性和效率。对于两种激发方式,均在人体躯干模型中采集传输场图。在一项针对12名受试者的志愿者研究中,对每种传输方式的翻转角分布和血液-心肌对比度进行了检查。证明了局部收发信机射频线圈阵列在3特斯拉场强下用于心腔定量分析的可行性。
我们的模拟和实验表明,在3特斯拉场强下使用四通道表面射频线圈传输进行心脏MRI与当前临床使用大容积体部射频线圈传输的心脏MRI实践相比具有竞争力。4发射/4接收设置的效率优势有助于在局部比吸收率(SAR)限制下实现比体部射频线圈传输在全身SAR限制下更短的重复时间。使用体部射频线圈和四通道表面射频线圈传输进行心腔定量分析时,未发现统计学上的显著差异。我们的模拟还表明,当以最大适用输入功率驱动体部射频线圈以达到全身SAR限制时,其超过局部SAR限制约2倍。
在心脏MRI中采用局部表面射频线圈阵列进行传输,从概念上讲是一种有吸引力的替代体部射频线圈传输的方法,特别是对于有植入物的患者。