Wariishi H, Valli K, Renganathan V, Gold M H
Department of Chemical and Biological Sciences, Oregon Graduate Center, Beaverton 97006-1999.
J Biol Chem. 1989 Aug 25;264(24):14185-91.
In the presence of MnII, H2O2, and glutathione (GSH), manganese peroxidase oxidized veratryl alcohol (I) to veratraldehyde (IV). Anisyl alcohol (II) and benzyl alcohol (III) were also oxidized by this system to their corresponding aldehydes (V and VI). In the presence of GSH, chemically prepared MnIII or gamma-irradiation also catalyzed the oxidation of I, II, and III to IV, V, and VI, respectively. GSH and dithiothreitol rapidly reduced MnIII to MnII in the absence of aromatic substrates and the dithiothreitol was oxidized to its disulfide (4,5-dihydroxyl-1,2-dithiane). These results indicate that the thiol is oxidized by enzyme-generated MnIII to a thiyl radical. The latter abstracts a hydrogen from the substrate, forming a benzylic radical which reacts with another thiyl radical to yield an intermediate which decomposes to the benzaldehyde product. In the presence of MnII, GSH, and H2O2, manganese peroxidase also oxidized 1-(4-ethoxy-3-methoxy-phenyl)-2-(4'-hydroxymethyl-2'-methoxyphenoxy)- 1,3-dihydroxypropane (XII) to yield vanillyl alcohol (VII), vanillin (VIII), 1-(4-ethoxy-3-methoxyphenyl)-1,3-dihydroxypropane (XVI), 1-(4-ethoxy-3-methoxyphenyl)-1-oxo-3-hydroxypropane (XIX), and several C alpha oxidized dimeric products. Abstraction of the C alpha (A ring) hydrogen of the dimer (XII) yields a benzylic radical, leading to C beta oxygen ether cleavage. The resultant intermediates yield the ketone (XIX) and vanillyl alcohol (VII) or vanillin (VIII). Alternatively, benzylic radical formation at the C' alpha position (B ring) leads to radical cleavage, yielding a quinone methide and a C beta radical, which yield vanillin and the 1,3-diol (XVI), respectively. In these reactions, MnIII oxidizes a thiol to a thiyl radical which subsequently abstracts a hydrogen from the substrate to form a benzylic radical. The latter undergoes nonenzymatic reactions to yield the final products.
在二价锰、过氧化氢和谷胱甘肽(GSH)存在的情况下,锰过氧化物酶将藜芦醇(I)氧化为藜芦醛(IV)。茴香醇(II)和苯甲醇(III)也被该体系氧化为它们相应的醛(V和VI)。在谷胱甘肽存在的情况下,化学制备的三价锰或γ射线辐照也分别催化I、II和III氧化为IV、V和VI。在没有芳香底物的情况下,谷胱甘肽和二硫苏糖醇能迅速将三价锰还原为二价锰,且二硫苏糖醇被氧化为其双硫化物(4,5 - 二羟基 - 1,2 - 二硫烷)。这些结果表明,硫醇被酶产生的三价锰氧化为硫自由基。后者从底物中夺取一个氢,形成一个苄基自由基,该自由基与另一个硫自由基反应生成一种中间体,该中间体分解为苯甲醛产物。在二价锰、谷胱甘肽和过氧化氢存在的情况下,锰过氧化物酶还将1 - (4 - 乙氧基 - 3 - 甲氧基 - 苯基) - 2 - (4'-羟甲基 - 2'-甲氧基苯氧基) - 1,3 - 二羟基丙烷(XII)氧化,生成香草醇(VII)、香草醛(VIII)、1 - (4 - 乙氧基 - 3 - 甲氧基 - 苯基) - 1,3 - 二羟基丙烷(XVI)、1 - (4 - 乙氧基 - 3 - 甲氧基 - 苯基) - 1 - 氧代 - 3 - 羟基丙烷(XIX)以及几种α - 碳氧化的二聚产物。二聚体(XII)的α - 碳(A环)氢被夺取会产生一个苄基自由基,导致β - 碳氧醚键断裂。生成的中间体产生酮(XIX)和香草醇(VII)或香草醛(VIII)。或者,在α'- 碳位置(B环)形成苄基自由基会导致自由基断裂,产生一个醌甲基化物和一个β - 碳自由基,它们分别生成香草醛和1,3 - 二醇(XVI)。在这些反应中,三价锰将硫醇氧化为硫自由基,随后该硫自由基从底物中夺取一个氢以形成苄基自由基。后者进行非酶促反应生成最终产物。