Suppr超能文献

分子氧在木质素过氧化物酶反应中的作用。

Role of molecular oxygen in lignin peroxidase reactions.

作者信息

Renganathan V, Miki K, Gold M H

出版信息

Arch Biochem Biophys. 1986 Apr;246(1):155-61. doi: 10.1016/0003-9861(86)90459-5.

Abstract

Homogeneous lignin peroxidase (diarylpropane oxygenase) oxidized veratryl alcohol to veratryl aldehyde under anaerobic conditions in the presence of either H2O2, m-chloroperoxybenzoic acid (mCPBA), or p-nitroperoxybenzoic acid (pNPBA). Lignin peroxidase also oxidized the 1-(3',4'-diethoxyphenyl)-1,2-dihydroxy-(4"-methoxyphenyl)-propane I under anaerobic conditions in the presence of mCPBA to yield 3,4-diethoxybenzaldehyde III and 1-(4'-methoxyphenyl)-1,2-dihydroxyethane IV. In contrast to what occurs under aerobic conditions, under anaerobic conditions no 2-hydroxy-1-(4'-methoxyphenyl)-1-oxoethane V was obtained. During the diarylpropane I cleavage under anaerobic conditions, 18O from H2(18)O was incorporated into the alpha-position of the phenylglycol IV. Lignin peroxidase also hydroxylated 1-(4'-ethoxy-3'-methoxyphenyl)propane II at the alpha-position to yield 1-(4'-ethoxy-3'-methoxyphenyl)-1-hydroxypropane VI under anaerobic conditions in the presence of mCPBA. During the phenylpropane II hydroxylation under anaerobic conditions, 18O from H2(18)O was incorporated into the alpha-position of VI. These results are rationalized according to a mechanism involving an initial one-electron oxidation of the diarylpropane I by the lignin peroxidase compound I to form a benzene pi cation radical which undergoes alpha, beta cleavage to produce a benzaldehyde and a C6C2 benzylic radical. The latter is then attacked by O2 to form a hydroperoxy radical which may decompose through a tetroxide to form the phenylglycol IV and phenylketol V. Under anaerobic conditions the C6C2 benzylic radical is probably oxidized to a carbonium ion which would be subsequently attacked by H2O to yield the phenylglycol V.

摘要

在厌氧条件下,在过氧化氢、间氯过氧苯甲酸(mCPBA)或对硝基过氧苯甲酸(pNPBA)存在时,均一木质素过氧化物酶(二芳基丙烷加氧酶)将藜芦醇氧化为藜芦醛。在厌氧条件下,在mCPBA存在时,木质素过氧化物酶还将1-(3',4'-二乙氧基苯基)-1,2-二羟基-(4"-甲氧基苯基)-丙烷I氧化,生成3,4-二乙氧基苯甲醛III和1-(4'-甲氧基苯基)-1,2-二羟基乙烷IV。与有氧条件下的情况相反,在厌氧条件下未得到2-羟基-1-(4'-甲氧基苯基)-1-氧代乙烷V。在厌氧条件下二芳基丙烷I裂解过程中,H2(18)O中的18O掺入苯二醇IV的α位。在厌氧条件下,在mCPBA存在时,木质素过氧化物酶还将1-(4'-乙氧基-3'-甲氧基苯基)丙烷II在α位羟基化,生成1-(4'-乙氧基-3'-甲氧基苯基)-1-羟基丙烷VI。在厌氧条件下苯丙烷II羟基化过程中,H2(18)O中的18O掺入VI的α位。根据一种机制可以解释这些结果,该机制涉及木质素过氧化物酶化合物I对二芳基丙烷I进行初始单电子氧化,形成苯π阳离子自由基,该自由基发生α,β裂解生成苯甲醛和C6C2苄基自由基。后者随后被O2攻击形成氢过氧自由基,该自由基可通过四氧化物分解形成苯二醇IV和苯酮醇V。在厌氧条件下,C6C2苄基自由基可能被氧化为碳正离子,随后被H2O攻击生成苯二醇V。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验