The Molecular Foundry, Lawrence Berkeley National Laboratory , Berkeley, California 94720, United States.
Department of Psychiatry, University of California , San Francisco, California 94143, United States.
ACS Nano. 2016 Sep 27;10(9):8423-33. doi: 10.1021/acsnano.6b03288. Epub 2016 Sep 7.
Near infrared (NIR) microscopy enables noninvasive imaging in tissue, particularly in the NIR-II spectral range (1000-1400 nm) where attenuation due to tissue scattering and absorption is minimized. Lanthanide-doped upconverting nanocrystals are promising deep-tissue imaging probes due to their photostable emission in the visible and NIR, but these materials are not efficiently excited at NIR-II wavelengths due to the dearth of lanthanide ground-state absorption transitions in this window. Here, we develop a class of lanthanide-doped imaging probes that harness an energy-looping mechanism that facilitates excitation at NIR-II wavelengths, such as 1064 nm, that are resonant with excited-state absorption transitions but not ground-state absorption. Using computational methods and combinatorial screening, we have identified Tm(3+)-doped NaYF4 nanoparticles as efficient looping systems that emit at 800 nm under continuous-wave excitation at 1064 nm. Using this benign excitation with standard confocal microscopy, energy-looping nanoparticles (ELNPs) are imaged in cultured mammalian cells and through brain tissue without autofluorescence. The 1 mm imaging depths and 2 μm feature sizes are comparable to those demonstrated by state-of-the-art multiphoton techniques, illustrating that ELNPs are a promising class of NIR probes for high-fidelity visualization in cells and tissue.
近红外(NIR)显微镜能够在组织中进行非侵入性成像,特别是在近红外二区(1000-1400nm)光谱范围内,在该范围内,由于组织散射和吸收的衰减最小。镧系掺杂上转换纳米晶体由于其在可见光和近红外区域的光稳定性发射而成为有前途的深部组织成像探针,但由于在该窗口中缺乏镧系元素基态吸收跃迁,这些材料在近红外二区波长下不能有效地被激发。在这里,我们开发了一类镧系掺杂的成像探针,利用能量循环机制来促进近红外二区波长(如 1064nm)的激发,这些波长与激发态吸收跃迁共振,但与基态吸收跃迁无关。使用计算方法和组合筛选,我们已经确定 Tm(3+)-掺杂的 NaYF4 纳米颗粒是有效的循环系统,在 1064nm 的连续波激发下,以 800nm 的波长发射。使用这种标准共聚焦显微镜的良性激发,能量循环纳米颗粒(ELNPs)可以在培养的哺乳动物细胞中成像,并且可以穿过脑组织而没有自发荧光。1mm 的成像深度和 2μm 的特征尺寸与最先进的多光子技术所展示的相当,这表明 ELNPs 是一类有前途的近红外探针,可用于细胞和组织中的高保真可视化。