School of Materials Science and Engineering and Center for Biomimetic Sensor Science, Nanyang Technological University, Singapore 639798, Singapore.
Nanoscale. 2016 Sep 28;8(36):16486-98. doi: 10.1039/c6nr05551f. Epub 2016 Sep 7.
We present a bioinspired design strategy to engineer bacteria-targeting and membrane-disruptive nanoparticles for the effective antibiotic therapy of Helicobacter pylori (H. pylori) infection. Antibacterial nanoparticles were self-assembled from highly exfoliated montmorillonite (eMMT) and cationic linear polyethyleneimine (lPEI) via electrostatic interactions. eMMT functions as a bioinspired 'sticky' building block for anchoring antibacterial nanoparticles onto the bacterial cell surface via bacteria-secreted extracellular polymeric substances (EPS), whereas membrane-disruptive lPEI is able to efficiently lyse the bacterial outer membrane to allow topical transmembrane delivery of antibiotics into the intracellular cytoplasm. As a result, eMMT-lPEI nanoparticles intercalated with the antibiotic metronidazole (MTZ) not only efficiently target bacteria via EPS-mediated adhesion and kill bacteria in vitro, but also can effectively remain in the stomach where H. pylori reside, thereby serving as an efficient drug carrier for the direct on-site release of MTZ into the bacterial cytoplasm. Importantly, MTZ-intercalated eMMT-lPEI nanoparticles were able to efficiently eradicate H. pylori in vivo and to significantly improve H. pylori-associated gastric ulcers and the inflammatory response in a mouse model, and also showed superior therapeutic efficacy as compared to standard triple therapy. Our findings reveal that bacterial adhesion plays a critical role in promoting efficient antimicrobial delivery and also represent an original bioinspired targeting strategy via specific EPS-mediated adsorption. The bacteria-adhesive eMMT-lPEI nanoparticles with membrane-disruptive ability may constitute a promising drug carrier system for the efficacious targeted delivery of antibiotics in the treatment of bacterial infections.
我们提出了一种仿生设计策略,用于构建靶向细菌和破坏细胞膜的纳米颗粒,以有效治疗幽门螺杆菌(H. pylori)感染。抗菌纳米颗粒是通过静电相互作用从高度剥离的蒙脱石(eMMT)和阳离子线性聚乙烯亚胺(lPEI)自组装而成的。eMMT 作为一种仿生“粘性”构建块,通过细菌分泌的细胞外聚合物物质(EPS)将抗菌纳米颗粒锚定在细菌细胞表面,而具有破坏细胞膜的功能 lPEI 能够有效地裂解细菌外膜,使抗生素能够穿透细胞膜进入细胞内细胞质。结果,插层有抗生素甲硝唑(MTZ)的 eMMT-lPEI 纳米颗粒不仅通过 EPS 介导的粘附有效地靶向细菌并在体外杀死细菌,而且还可以有效地留在 H. pylori 所在的胃中,从而作为一种有效的药物载体,将 MTZ 直接原位释放到细菌细胞质中。重要的是,插层有 MTZ 的 eMMT-lPEI 纳米颗粒能够在体内有效根除 H. pylori,并显著改善小鼠模型中的 H. pylori 相关胃溃疡和炎症反应,与标准三联疗法相比,还显示出更好的治疗效果。我们的研究结果表明,细菌粘附在促进高效抗菌药物传递中起着关键作用,并且还代表了一种通过特定 EPS 介导的吸附进行的原始仿生靶向策略。具有破坏细胞膜能力的细菌粘附性 eMMT-lPEI 纳米颗粒可能构成一种有前途的药物载体系统,用于有效靶向递送抗生素以治疗细菌感染。