Suppr超能文献

工程化具有膜破坏特性的细菌黏附性粘土纳米颗粒用于治疗幽门螺杆菌感染。

Engineering bioinspired bacteria-adhesive clay nanoparticles with a membrane-disruptive property for the treatment of Helicobacter pylori infection.

机构信息

School of Materials Science and Engineering and Center for Biomimetic Sensor Science, Nanyang Technological University, Singapore 639798, Singapore.

出版信息

Nanoscale. 2016 Sep 28;8(36):16486-98. doi: 10.1039/c6nr05551f. Epub 2016 Sep 7.

Abstract

We present a bioinspired design strategy to engineer bacteria-targeting and membrane-disruptive nanoparticles for the effective antibiotic therapy of Helicobacter pylori (H. pylori) infection. Antibacterial nanoparticles were self-assembled from highly exfoliated montmorillonite (eMMT) and cationic linear polyethyleneimine (lPEI) via electrostatic interactions. eMMT functions as a bioinspired 'sticky' building block for anchoring antibacterial nanoparticles onto the bacterial cell surface via bacteria-secreted extracellular polymeric substances (EPS), whereas membrane-disruptive lPEI is able to efficiently lyse the bacterial outer membrane to allow topical transmembrane delivery of antibiotics into the intracellular cytoplasm. As a result, eMMT-lPEI nanoparticles intercalated with the antibiotic metronidazole (MTZ) not only efficiently target bacteria via EPS-mediated adhesion and kill bacteria in vitro, but also can effectively remain in the stomach where H. pylori reside, thereby serving as an efficient drug carrier for the direct on-site release of MTZ into the bacterial cytoplasm. Importantly, MTZ-intercalated eMMT-lPEI nanoparticles were able to efficiently eradicate H. pylori in vivo and to significantly improve H. pylori-associated gastric ulcers and the inflammatory response in a mouse model, and also showed superior therapeutic efficacy as compared to standard triple therapy. Our findings reveal that bacterial adhesion plays a critical role in promoting efficient antimicrobial delivery and also represent an original bioinspired targeting strategy via specific EPS-mediated adsorption. The bacteria-adhesive eMMT-lPEI nanoparticles with membrane-disruptive ability may constitute a promising drug carrier system for the efficacious targeted delivery of antibiotics in the treatment of bacterial infections.

摘要

我们提出了一种仿生设计策略,用于构建靶向细菌和破坏细胞膜的纳米颗粒,以有效治疗幽门螺杆菌(H. pylori)感染。抗菌纳米颗粒是通过静电相互作用从高度剥离的蒙脱石(eMMT)和阳离子线性聚乙烯亚胺(lPEI)自组装而成的。eMMT 作为一种仿生“粘性”构建块,通过细菌分泌的细胞外聚合物物质(EPS)将抗菌纳米颗粒锚定在细菌细胞表面,而具有破坏细胞膜的功能 lPEI 能够有效地裂解细菌外膜,使抗生素能够穿透细胞膜进入细胞内细胞质。结果,插层有抗生素甲硝唑(MTZ)的 eMMT-lPEI 纳米颗粒不仅通过 EPS 介导的粘附有效地靶向细菌并在体外杀死细菌,而且还可以有效地留在 H. pylori 所在的胃中,从而作为一种有效的药物载体,将 MTZ 直接原位释放到细菌细胞质中。重要的是,插层有 MTZ 的 eMMT-lPEI 纳米颗粒能够在体内有效根除 H. pylori,并显著改善小鼠模型中的 H. pylori 相关胃溃疡和炎症反应,与标准三联疗法相比,还显示出更好的治疗效果。我们的研究结果表明,细菌粘附在促进高效抗菌药物传递中起着关键作用,并且还代表了一种通过特定 EPS 介导的吸附进行的原始仿生靶向策略。具有破坏细胞膜能力的细菌粘附性 eMMT-lPEI 纳米颗粒可能构成一种有前途的药物载体系统,用于有效靶向递送抗生素以治疗细菌感染。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验