文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

针对幽门螺杆菌感染的靶向纳米治疗。

Targeted nanotherapeutics for the treatment of Helicobacter pylori infection.

机构信息

i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.

INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal.

出版信息

J Biomed Sci. 2024 Aug 11;31(1):78. doi: 10.1186/s12929-024-01068-9.


DOI:10.1186/s12929-024-01068-9
PMID:39128983
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11316987/
Abstract

Helicobacter pylori infection is involved in gastric diseases such as peptic ulcer and adenocarcinoma. Approved antibiotherapies still fail in 10 to 40% of the infected patients and, in this scenario, targeted nanotherapeutics emerged as powerful allies for H. pylori eradication. Nano/microparticles conjugated with H. pylori binding molecules were developed to eliminate H. pylori by either (i) blocking essential mechanisms of infection, such as adhesion to gastric mucosa or (ii) binding and killing H. pylori through the release of drugs within the bacteria or at the site of infection. Glycan antigens (as Lewis B and sialyl-Lewis X), pectins, lectins, phosphatidylethanolamine and epithelial cell membranes were conjugated with nano/microparticles to successfully block H. pylori adhesion. Urea-coated nanoparticles were used to improve drug delivery inside bacteria through H. pylori UreI channel. Moreover, nanoparticles coated with antibodies against H. pylori and loaded with sono/photosensitizers, were promising for their application as targeted sono/photodynamic therapies. Further, non-specific H. pylori nano/microparticles, but only active in the acidic gastric environment, coated with binders to bacterial membrane, extracellular polymeric substances or to high temperature requirement A protease, were evaluated. In this review, an overview of the existing nanotherapeutics targeting H. pylori will be given and their rational, potential to counteract infection, as well as level of development will be presented and discussed.

摘要

幽门螺杆菌感染与消化性溃疡和腺癌等胃部疾病有关。尽管已批准的抗生素疗法在 10%至 40%的感染患者中仍然失败,但在这种情况下,靶向纳米疗法已成为根除幽门螺杆菌的有力盟友。与幽门螺杆菌结合分子偶联的纳米/微颗粒被开发出来,通过(i)阻断感染的必要机制,如粘附在胃黏膜上,或(ii)通过在细菌内或感染部位释放药物来结合和杀死幽门螺杆菌,从而消除幽门螺杆菌。糖抗原(如 Lewis B 和唾液酸-Lewis X)、果胶、凝集素、磷脂酰乙醇胺和上皮细胞膜与纳米/微颗粒偶联,成功阻断了幽门螺杆菌的粘附。尿素涂层纳米颗粒用于通过幽门螺杆菌 UreI 通道改善药物在细菌内的递送。此外,用针对幽门螺杆菌的抗体涂层并负载声/光敏剂的纳米颗粒,有望作为靶向声/光动力疗法得到应用。此外,还评估了仅在酸性胃环境中具有活性、但对非特异性幽门螺杆菌纳米/微颗粒具有结合剂的纳米/微颗粒,这些结合剂可以结合细菌膜、细胞外聚合物物质或高温需求 A 蛋白酶。在这篇综述中,将概述现有的靶向幽门螺杆菌的纳米疗法,并介绍和讨论它们的合理性、对抗感染的潜力以及开发水平。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/801d/11316987/c69cb94fa675/12929_2024_1068_Fig14_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/801d/11316987/2a6cf82d7a34/12929_2024_1068_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/801d/11316987/655e17b1b572/12929_2024_1068_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/801d/11316987/a944068bab14/12929_2024_1068_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/801d/11316987/540c661cdb06/12929_2024_1068_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/801d/11316987/c6ac4e603618/12929_2024_1068_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/801d/11316987/124967b95269/12929_2024_1068_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/801d/11316987/c4f93856c23f/12929_2024_1068_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/801d/11316987/64c25c7f96c6/12929_2024_1068_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/801d/11316987/17eaafc6f46a/12929_2024_1068_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/801d/11316987/9403c86c8d45/12929_2024_1068_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/801d/11316987/2c16df864e0f/12929_2024_1068_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/801d/11316987/82013737c1bb/12929_2024_1068_Fig12_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/801d/11316987/7371b13fa6be/12929_2024_1068_Fig13_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/801d/11316987/c69cb94fa675/12929_2024_1068_Fig14_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/801d/11316987/2a6cf82d7a34/12929_2024_1068_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/801d/11316987/655e17b1b572/12929_2024_1068_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/801d/11316987/a944068bab14/12929_2024_1068_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/801d/11316987/540c661cdb06/12929_2024_1068_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/801d/11316987/c6ac4e603618/12929_2024_1068_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/801d/11316987/124967b95269/12929_2024_1068_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/801d/11316987/c4f93856c23f/12929_2024_1068_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/801d/11316987/64c25c7f96c6/12929_2024_1068_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/801d/11316987/17eaafc6f46a/12929_2024_1068_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/801d/11316987/9403c86c8d45/12929_2024_1068_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/801d/11316987/2c16df864e0f/12929_2024_1068_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/801d/11316987/82013737c1bb/12929_2024_1068_Fig12_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/801d/11316987/7371b13fa6be/12929_2024_1068_Fig13_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/801d/11316987/c69cb94fa675/12929_2024_1068_Fig14_HTML.jpg

相似文献

[1]
Targeted nanotherapeutics for the treatment of Helicobacter pylori infection.

J Biomed Sci. 2024-8-11

[2]
Microparticles and nanoparticles-based approaches to improve oral treatment of infection.

Crit Rev Microbiol. 2024-9

[3]
Highlighting the use of micro and nanoparticles based-drug delivery systems for the treatment of infections.

Crit Rev Microbiol. 2021-8

[4]
Polysaccharides as Bacterial Antiadhesive Agents and "Smart" Constituents for Improved Drug Delivery Systems Against Helicobacter pylori Infection.

Curr Pharm Des. 2015

[5]
Residence Time-Extended Nanoparticles by Magnetic Field Improve the Eradication Efficiency of .

ACS Appl Mater Interfaces. 2020-12-9

[6]
Construction and optimization of pH-sensitive nanoparticle delivery system containing PLGA and UCCs-2 for targeted treatment of Helicobacter pylori.

Colloids Surf B Biointerfaces. 2018-1-9

[7]
An overview of nanotechnology-based treatment approaches against Helicobacter Pylori.

Expert Rev Anti Infect Ther. 2019-10-16

[8]
Engineering bioinspired bacteria-adhesive clay nanoparticles with a membrane-disruptive property for the treatment of Helicobacter pylori infection.

Nanoscale. 2016-9-7

[9]
Smart drug delivery against Helicobacter pylori: pectin-coated, mucoadhesive liposomes with antiadhesive activity and antibiotic cargo.

Appl Microbiol Biotechnol. 2020-7

[10]
An Overview of Helicobacter pylori Infection.

Methods Mol Biol. 2021

引用本文的文献

[1]
Urea Transport Mediated by Membrane Proteins of Non-urea-Transporters.

Subcell Biochem. 2025

[2]
Application of Nanodrug Delivery Systems in Enhancing Treatment of Gastritis and Gastric Cancer: A Systematic Evaluation of Targeted Therapy.

Pharmaceutics. 2025-5-22

[3]
Research trends of nanomaterials in : a bibliometric analysis from 2003 to 2023.

Front Pharmacol. 2025-3-28

[4]
and gastric cancer: current insights and nanoparticle-based interventions.

RSC Adv. 2025-2-18

本文引用的文献

[1]
Modification methods, biological activities and applications of pectin: A review.

Int J Biol Macromol. 2023-12-31

[2]
Treatment of infection and gastric ulcer: Need for novel Pharmaceutical formulation.

Heliyon. 2023-9-24

[3]
Medical Applications and Advancement of Near Infrared Photosensitive Indocyanine Green Molecules.

Molecules. 2023-8-16

[4]
Helicobacter pylori in the post-antibiotics era: from virulence factors to new drug targets and therapeutic agents.

Arch Microbiol. 2023-8-7

[5]
How Long Will It Take to Launch an Effective Vaccine for Humans?

Infect Drug Resist. 2023-6-15

[6]
Smart Biomimetic Nanozymes for Precise Molecular Imaging: Application and Challenges.

Pharmaceuticals (Basel). 2023-2-7

[7]
Structural basis for Lewis antigen synthesis by the α1,3-fucosyltransferase FUT9.

Nat Chem Biol. 2023-8

[8]
Development of apigenin loaded gastroretentive microsponge for the targeting of .

Saudi Pharm J. 2023-5

[9]
The Potential of Alternative Therapies and Vaccine Candidates against .

Pharmaceuticals (Basel). 2023-4-6

[10]
Current understanding of antibiotic-associated dysbiosis and approaches for its management.

Ther Adv Infect Dis. 2023-2-24

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索