Suppr超能文献

糖酵解选择性地塑造突触前动作电位波形。

Glycolysis selectively shapes the presynaptic action potential waveform.

作者信息

Lujan Brendan, Kushmerick Christopher, Banerjee Tania Das, Dagda Ruben K, Renden Robert

机构信息

Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, Nevada.

Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Minas Gerais, Brazil; and.

出版信息

J Neurophysiol. 2016 Dec 1;116(6):2523-2540. doi: 10.1152/jn.00629.2016. Epub 2016 Sep 7.

Abstract

Mitochondria are major suppliers of cellular energy in neurons; however, utilization of energy from glycolysis vs. mitochondrial oxidative phosphorylation (OxPhos) in the presynaptic compartment during neurotransmission is largely unknown. Using presynaptic and postsynaptic recordings from the mouse calyx of Held, we examined the effect of acute selective pharmacological inhibition of glycolysis or mitochondrial OxPhos on multiple mechanisms regulating presynaptic function. Inhibition of glycolysis via glucose depletion and iodoacetic acid (1 mM) treatment, but not mitochondrial OxPhos, rapidly altered transmission, resulting in highly variable, oscillating responses. At reduced temperature, this same treatment attenuated synaptic transmission because of a smaller and broader presynaptic action potential (AP) waveform. We show via experimental manipulation and ion channel modeling that the altered AP waveform results in smaller Ca influx, resulting in attenuated excitatory postsynaptic currents (EPSCs). In contrast, inhibition of mitochondria-derived ATP production via extracellular pyruvate depletion and bath-applied oligomycin (1 μM) had no significant effect on Ca influx and did not alter the AP waveform within the same time frame (up to 30 min), and the resultant EPSC remained unaffected. Glycolysis, but not mitochondrial OxPhos, is thus required to maintain basal synaptic transmission at the presynaptic terminal. We propose that glycolytic enzymes are closely apposed to ATP-dependent ion pumps on the presynaptic membrane. Our results indicate a novel mechanism for the effect of hypoglycemia on neurotransmission. Attenuated transmission likely results from a single presynaptic mechanism at reduced temperature: a slower, smaller AP, before and independent of any effect on synaptic vesicle release or receptor activity.

摘要

线粒体是神经元中细胞能量的主要供应者;然而,在神经传递过程中,突触前区利用糖酵解能量与线粒体氧化磷酸化(OxPhos)能量的情况在很大程度上尚不清楚。我们利用来自小鼠Held壶腹的突触前和突触后记录,研究了急性选择性药理学抑制糖酵解或线粒体氧化磷酸化对调节突触前功能的多种机制的影响。通过葡萄糖耗尽和碘乙酸(1 mM)处理抑制糖酵解,但不抑制线粒体氧化磷酸化,会迅速改变传递,导致高度可变的振荡反应。在较低温度下,相同处理会减弱突触传递,这是因为突触前动作电位(AP)波形更小且更宽。我们通过实验操作和离子通道建模表明,改变的AP波形导致较小的Ca内流,从而导致兴奋性突触后电流(EPSC)减弱。相比之下,通过细胞外丙酮酸耗尽和浴加寡霉素(1 μM)抑制线粒体产生的ATP对Ca内流没有显著影响,并且在同一时间框架(长达30分钟)内不会改变AP波形,并且由此产生的EPSC保持不受影响。因此,在突触前终末维持基础突触传递需要糖酵解,而不是线粒体氧化磷酸化。我们提出糖酵解酶与突触前膜上的ATP依赖性离子泵紧密相邻。我们的结果表明了低血糖对神经传递影响的一种新机制。传递减弱可能是由于在较低温度下单一的突触前机制导致的:一个更慢、更小的动作电位,在对突触小泡释放或受体活性产生任何影响之前且与之无关。

相似文献

1
Glycolysis selectively shapes the presynaptic action potential waveform.
J Neurophysiol. 2016 Dec 1;116(6):2523-2540. doi: 10.1152/jn.00629.2016. Epub 2016 Sep 7.
2
Differential Presynaptic ATP Supply for Basal and High-Demand Transmission.
J Neurosci. 2017 Feb 15;37(7):1888-1899. doi: 10.1523/JNEUROSCI.2712-16.2017. Epub 2017 Jan 16.
3
Presynaptic mitochondrial calcium sequestration influences transmission at mammalian central synapses.
J Neurosci. 2002 Jul 15;22(14):5840-7. doi: 10.1523/JNEUROSCI.22-14-05840.2002.
4
Control of synaptic strength and timing by the release-site Ca2+ signal.
Nat Neurosci. 2005 Apr;8(4):426-34. doi: 10.1038/nn1417. Epub 2005 Mar 6.
7
Glucose and lactate as metabolic constraints on presynaptic transmission at an excitatory synapse.
J Physiol. 2018 May 1;596(9):1699-1721. doi: 10.1113/JP275107. Epub 2018 Mar 26.
8

引用本文的文献

3
ATP-sensitive potassium channels alter glycolytic flux to modulate cortical activity and sleep.
Proc Natl Acad Sci U S A. 2025 Feb 25;122(8):e2416578122. doi: 10.1073/pnas.2416578122. Epub 2025 Feb 18.
4
Altered neuronal lactate dehydrogenase A expression affects cognition in a sex- and age-dependent manner.
iScience. 2024 Jun 21;27(7):110342. doi: 10.1016/j.isci.2024.110342. eCollection 2024 Jul 19.
6
D-ꞵ-hydroxybutyrate stabilizes hippocampal CA3-CA1 circuit during acute insulin resistance.
PNAS Nexus. 2024 May 16;3(5):pgae196. doi: 10.1093/pnasnexus/pgae196. eCollection 2024 May.
8
Dopamine Release Neuroenergetics in Mouse Striatal Slices.
Int J Mol Sci. 2024 Apr 23;25(9):4580. doi: 10.3390/ijms25094580.
9
Energy metabolic pathways in neuronal development and function.
Oxf Open Neurosci. 2023 Mar 21;2:kvad004. doi: 10.1093/oons/kvad004. eCollection 2023.
10
Brain energy metabolism: A roadmap for future research.
J Neurochem. 2024 May;168(5):910-954. doi: 10.1111/jnc.16032. Epub 2024 Jan 6.

本文引用的文献

1
Monomethylarsonous acid, but not inorganic arsenic, is a mitochondria-specific toxicant in vascular smooth muscle cells.
Toxicol In Vitro. 2016 Sep;35:188-201. doi: 10.1016/j.tiv.2016.06.006. Epub 2016 Jun 17.
2
Glycolytic Enzymes Localize to Synapses under Energy Stress to Support Synaptic Function.
Neuron. 2016 Apr 20;90(2):278-91. doi: 10.1016/j.neuron.2016.03.011. Epub 2016 Apr 7.
3
IGF-1 Receptor Differentially Regulates Spontaneous and Evoked Transmission via Mitochondria at Hippocampal Synapses.
Neuron. 2016 Feb 3;89(3):583-97. doi: 10.1016/j.neuron.2015.12.034. Epub 2016 Jan 21.
4
Optogenetic acidification of synaptic vesicles and lysosomes.
Nat Neurosci. 2015 Dec;18(12):1845-1852. doi: 10.1038/nn.4161. Epub 2015 Nov 9.
5
The role of mitochondrially derived ATP in synaptic vesicle recycling.
J Biol Chem. 2015 Sep 11;290(37):22325-36. doi: 10.1074/jbc.M115.656405. Epub 2015 Jun 30.
10
Activity-driven local ATP synthesis is required for synaptic function.
Cell. 2014 Feb 13;156(4):825-35. doi: 10.1016/j.cell.2013.12.042.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验