Sobieski Courtney, Fitzpatrick Michael J, Mennerick Steven J
Department of Psychiatry.
Graduate Program in Neuroscience, and.
J Neurosci. 2017 Feb 15;37(7):1888-1899. doi: 10.1523/JNEUROSCI.2712-16.2017. Epub 2017 Jan 16.
The relative contributions of glycolysis and oxidative phosphorylation to neuronal presynaptic energy demands are unclear. In rat hippocampal neurons, ATP production by either glycolysis or oxidative phosphorylation alone sustained basal evoked synaptic transmission for up to 20 min. However, combined inhibition of both ATP sources abolished evoked transmission. Neither action potential propagation failure nor depressed Ca influx explained loss of evoked synaptic transmission. Rather, inhibition of ATP synthesis caused massive spontaneous vesicle exocytosis, followed by arrested endocytosis, accounting for the disappearance of evoked postsynaptic currents. In contrast to its weak effects on basal transmission, inhibition of oxidative phosphorylation alone depressed recovery from vesicle depletion. Local astrocytic lactate shuttling was not required. Instead, either ambient monocarboxylates or neuronal glycolysis was sufficient to supply requisite substrate. In summary, basal transmission can be sustained by glycolysis, but strong presynaptic demands are met preferentially by oxidative phosphorylation, which can be maintained by bulk but not local monocarboxylates or by neuronal glycolysis. Neuronal energy levels are critical for proper CNS function, but the relative roles for the two main sources of ATP production, glycolysis and oxidative phosphorylation, in fueling presynaptic function in unclear. Either glycolysis or oxidative phosphorylation can fuel low-frequency synaptic function and inhibiting both underlies loss of synaptic transmission via massive vesicle release and subsequent failure to endocytose lost vesicles. Oxidative phosphorylation, fueled by either glycolysis or endogenously released monocarboxylates, can fuel more metabolically demanding tasks such as vesicle recovery after depletion. Our work demonstrates the flexible nature of fueling presynaptic function to maintain synaptic function.
糖酵解和氧化磷酸化对神经元突触前能量需求的相对贡献尚不清楚。在大鼠海马神经元中,单独通过糖酵解或氧化磷酸化产生的ATP可维持基础诱发突触传递长达20分钟。然而,同时抑制这两种ATP来源则会消除诱发传递。动作电位传播失败和钙内流减少都不能解释诱发突触传递的丧失。相反,ATP合成的抑制导致大量自发囊泡胞吐,随后内吞作用停止,这解释了诱发的突触后电流消失的原因。与对基础传递的微弱影响相反,单独抑制氧化磷酸化会抑制囊泡耗竭后的恢复。局部星形胶质细胞乳酸穿梭并非必需。相反,环境中的单羧酸或神经元糖酵解足以提供所需的底物。总之,基础传递可由糖酵解维持,但强烈的突触前需求优先由氧化磷酸化满足,氧化磷酸化可由大量而非局部的单羧酸或神经元糖酵解维持。神经元能量水平对中枢神经系统的正常功能至关重要,但ATP产生的两个主要来源,糖酵解和氧化磷酸化,在为突触前功能提供能量方面的相对作用尚不清楚。糖酵解或氧化磷酸化均可为低频突触功能提供能量,同时抑制两者会导致突触传递丧失,其机制是大量囊泡释放以及随后无法内吞丢失的囊泡。由糖酵解或内源性释放的单羧酸提供能量的氧化磷酸化,可为代谢需求更高的任务提供能量,如囊泡耗竭后的恢复。我们的工作证明了为突触前功能提供能量以维持突触功能的灵活性。