Suppr超能文献

具有复发性迁移模式的结构种群中的入侵阈值。

Invasion threshold in structured populations with recurrent mobility patterns.

机构信息

Complex Networks and Systems Lagrange Laboratory, Institute for Scientific Interchange, Torino 10133, Italy.

出版信息

J Theor Biol. 2012 Jan 21;293:87-100. doi: 10.1016/j.jtbi.2011.10.010. Epub 2011 Oct 19.

Abstract

In this paper we develop a framework to analyze the behavior of contagion and spreading processes in complex subpopulation networks where individuals have memory of their subpopulation of origin. We introduce a metapopulation model in which subpopulations are connected through heterogeneous fluxes of individuals. The mobility process among communities takes into account the memory of residence of individuals and is incorporated with the classical susceptible-infectious-recovered epidemic model within each subpopulation. In order to gain analytical insight into the behavior of the system we use degree-block variables describing the heterogeneity of the subpopulation network and a time-scale separation technique for the dynamics of individuals. By considering the stochastic nature of the epidemic process we obtain the explicit expression of the global epidemic invasion threshold, below which the disease dies out before reaching a macroscopic fraction of the subpopulations. This threshold is not present in continuous deterministic diffusion models and explicitly depends on the disease parameters, the mobility rates, and the properties of the coupling matrices describing the mobility across subpopulations. The results presented here take a step further in offering insight into the fundamental mechanisms controlling the spreading of infectious diseases and other contagion processes across spatially structured communities.

摘要

在本文中,我们开发了一个框架来分析复杂亚群网络中传染病和传播过程的行为,其中个体具有其起源亚群的记忆。我们引入了一个元种群模型,其中亚群通过个体的异质通量连接。社区之间的流动过程考虑了个体的居住记忆,并与每个亚群内的经典易感-感染-恢复流行模型相结合。为了深入了解系统的行为,我们使用描述亚群网络异质性的度块变量和个体动态的时间尺度分离技术。通过考虑传染病过程的随机性,我们得到了全局传染病入侵阈值的显式表达式,低于该阈值,疾病在到达亚群的宏观部分之前就会消失。这个阈值在连续的确定性扩散模型中不存在,并且明确取决于疾病参数、迁移率以及描述亚群间迁移的耦合矩阵的特性。这里提出的结果更进一步,深入了解了控制传染病和其他传染病在空间结构社区中传播的基本机制。

相似文献

1
Invasion threshold in structured populations with recurrent mobility patterns.
J Theor Biol. 2012 Jan 21;293:87-100. doi: 10.1016/j.jtbi.2011.10.010. Epub 2011 Oct 19.
2
Epidemic modeling in metapopulation systems with heterogeneous coupling pattern: theory and simulations.
J Theor Biol. 2008 Apr 7;251(3):450-67. doi: 10.1016/j.jtbi.2007.11.028. Epub 2007 Nov 29.
3
Invasion threshold in heterogeneous metapopulation networks.
Phys Rev Lett. 2007 Oct 5;99(14):148701. doi: 10.1103/PhysRevLett.99.148701.
4
5
Human mobility and time spent at destination: impact on spatial epidemic spreading.
J Theor Biol. 2013 Dec 7;338:41-58. doi: 10.1016/j.jtbi.2013.08.032. Epub 2013 Sep 4.
6
Intervention threshold for epidemic control in susceptible-infected-recovered metapopulation models.
Phys Rev E. 2019 Aug;100(2-1):022302. doi: 10.1103/PhysRevE.100.022302.
7
Modeling epidemic in metapopulation networks with heterogeneous diffusion rates.
Math Biosci Eng. 2019 Aug 5;16(6):7085-7097. doi: 10.3934/mbe.2019355.
8
Stochastic epidemic dynamics on extremely heterogeneous networks.
Phys Rev E. 2016 Dec;94(6-1):062408. doi: 10.1103/PhysRevE.94.062408. Epub 2016 Dec 19.
9
Epidemic dynamics on metapopulation networks with node2vec mobility.
J Theor Biol. 2022 Feb 7;534:110960. doi: 10.1016/j.jtbi.2021.110960. Epub 2021 Nov 11.
10
Epidemic Spreading in Metapopulation Networks Coupled With Awareness Propagation.
IEEE Trans Cybern. 2023 Dec;53(12):7686-7698. doi: 10.1109/TCYB.2022.3198732. Epub 2023 Nov 29.

引用本文的文献

2
Quantum-Like Approaches Unveil the Intrinsic Limits of Predictability in Compartmental Models.
Entropy (Basel). 2024 Oct 21;26(10):888. doi: 10.3390/e26100888.
3
Trip duration drives shift in travel network structure with implications for the predictability of spatial disease spread.
PLoS Comput Biol. 2021 Aug 10;17(8):e1009127. doi: 10.1371/journal.pcbi.1009127. eCollection 2021 Aug.
4
Trade-offs between mobility restrictions and transmission of SARS-CoV-2.
J R Soc Interface. 2021 Feb;18(175):20200936. doi: 10.1098/rsif.2020.0936. Epub 2021 Feb 24.
5
Association of built environment attributes with the spread of COVID-19 at its initial stage in China.
Sustain Cities Soc. 2021 Apr;67:102752. doi: 10.1016/j.scs.2021.102752. Epub 2021 Feb 3.
6
Infectious diseases spreading on a metapopulation network coupled with its second-neighbor network.
Appl Math Comput. 2019 Nov 15;361:87-97. doi: 10.1016/j.amc.2019.05.005. Epub 2019 Jun 19.
7
Moment closure of infectious diseases model on heterogeneous metapopulation network.
Adv Differ Equ. 2018;2018(1):339. doi: 10.1186/s13662-018-1801-x. Epub 2018 Sep 24.
8
Spatial epidemiology of networked metapopulation: an overview.
Chin Sci Bull. 2014;59(28):3511-3522. doi: 10.1007/s11434-014-0499-8. Epub 2014 Jul 19.
9
Interplay between epidemic spread and information propagation on metapopulation networks.
J Theor Biol. 2017 May 7;420:18-25. doi: 10.1016/j.jtbi.2017.02.020. Epub 2017 Mar 1.
10
Spotting Epidemic Keystones by R0 Sensitivity Analysis: High-Risk Stations in the Tokyo Metropolitan Area.
PLoS One. 2016 Sep 8;11(9):e0162406. doi: 10.1371/journal.pone.0162406. eCollection 2016.

本文引用的文献

1
Metapopulation moments: coupling, stochasticity and persistence.
J Anim Ecol. 2000 Sep;69(5):725-736. doi: 10.1046/j.1365-2656.2000.00430.x.
2
Phase transitions in contagion processes mediated by recurrent mobility patterns.
Nat Phys. 2011 Jul 1;7:581-586. doi: 10.1038/nphys1944.
3
The role of routine versus random movements on the spread of disease in Great Britain.
Epidemics. 2009 Dec;1(4):250-8. doi: 10.1016/j.epidem.2009.11.002. Epub 2009 Nov 14.
4
Human mobility networks, travel restrictions, and the global spread of 2009 H1N1 pandemic.
PLoS One. 2011 Jan 31;6(1):e16591. doi: 10.1371/journal.pone.0016591.
5
(Meta)population dynamics of infectious diseases.
Trends Ecol Evol. 1997 Oct;12(10):395-9. doi: 10.1016/s0169-5347(97)01174-9.
6
Individual identity and movement networks for disease metapopulations.
Proc Natl Acad Sci U S A. 2010 May 11;107(19):8866-70. doi: 10.1073/pnas.1000416107. Epub 2010 Apr 26.
7
The effect of global travel on the spread of sars.
Math Biosci Eng. 2006 Jan;3(1):205-18. doi: 10.3934/mbe.2006.3.205.
8
Limits of predictability in human mobility.
Science. 2010 Feb 19;327(5968):1018-21. doi: 10.1126/science.1177170.
9
Multiscale mobility networks and the spatial spreading of infectious diseases.
Proc Natl Acad Sci U S A. 2009 Dec 22;106(51):21484-9. doi: 10.1073/pnas.0906910106. Epub 2009 Dec 14.
10
Predicting the behavior of techno-social systems.
Science. 2009 Jul 24;325(5939):425-8. doi: 10.1126/science.1171990.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验