de Ruiter Quirina M B, Reitsma Johannes B, Moll Frans L, van Herwaarden Joost A
Department of Vascular Surgery, University Medical Center Utrecht, the Netherlands
Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, the Netherlands.
J Endovasc Ther. 2016 Dec;23(6):944-956. doi: 10.1177/1526602816668305. Epub 2016 Sep 8.
To investigate the total fluoroscopy time and radiation exposure dose during endovascular aortic repairs using mobile, fixed, or fixed C-arms with 3-dimensional image fusion (3D-IF).
A systematic search was performed to identify original articles reporting fluoroscopy time (FT) and the kerma area product (KAP) during endovascular aortic repairs. Data were grouped by noncomplex or complex (fenestrated, branched, or chimney) repairs and stratified by type of C-arm. The search identified 27 articles containing 51 study groups (35 noncomplex and 16 complex) that included 3444 patients. Random-effects meta-analysis and meta-regression models were used to calculate the pooled mean estimates of KAP and FT, as well as any effect of equipment or type of intervention. Results are presented with the 95% confidence interval and the statistical heterogeneity (I).
Within the noncomplex procedure studies, a significant (p<0.001) increase was found in the pooled mean KAP estimate in the fixed C-arm group (181 Gy·cm, 95% CI 129 to 233; I=99.7) compared with the mobile C-arm (78 Gy·cm, 95% CI 59.6 to 97.3; I=99.6). For complex cases, use of 3D-IF showed a significantly (p<0.001) lower mean KAP (139 Gy·cm, 95% CI 85 to 191; I=94%) compared to using fixed C-arms without 3D-IF (487 Gy·cm, 95% CI 331 to 643; I=94%).
For equivalent fluoroscopy times, the use of a fixed C-arm in noncomplex procedures leads to higher patient radiation doses compared to a mobile C-arm. Complex procedures, which are predominantly performed using fixed C-arms, are associated with the highest radiation dose per intervention. Using fixed C-arms combined with 3D-IF techniques during complex cases might seem an adequate method to compensate for the higher radiation doses measured when a fixed C-arm is used.
研究在使用带有三维图像融合(3D-IF)功能的移动、固定或固定C形臂进行血管腔内主动脉修复术期间的总透视时间和辐射暴露剂量。
进行系统检索以识别报告血管腔内主动脉修复术期间透视时间(FT)和比释动能面积乘积(KAP)的原始文章。数据按非复杂或复杂(开窗、分支或烟囱式)修复进行分组,并按C形臂类型进行分层。检索确定了27篇文章,包含51个研究组(35个非复杂组和16个复杂组),涉及3444例患者。采用随机效应荟萃分析和荟萃回归模型来计算KAP和FT的合并平均估计值,以及设备或干预类型的任何影响。结果以95%置信区间和统计异质性(I)呈现。
在非复杂手术研究中,与移动C形臂(78 Gy·cm,95% CI 59.6至97.3;I = 99.6)相比,固定C形臂组的合并平均KAP估计值显著升高(p<0.001)(181 Gy·cm,95% CI 129至233;I = 99.7)。对于复杂病例,与不使用3D-IF的固定C形臂(487 Gy·cm,95% CI 331至643;I = 94%)相比,使用3D-IF显示平均KAP显著降低(p<0.001)(139 Gy·cm,95% CI 85至191;I = 94%)。
在透视时间相同的情况下,与移动C形臂相比,在非复杂手术中使用固定C形臂会导致患者接受更高的辐射剂量。复杂手术主要使用固定C形臂进行,每次干预的辐射剂量最高。在复杂病例中使用固定C形臂结合3D-IF技术似乎是一种补偿使用固定C形臂时所测较高辐射剂量的适当方法。