Suppr超能文献

健康与疾病状态下的肾小球基底膜硫酸乙酰肝素:局部补体激活的调节因子

Glomerular basement membrane heparan sulfate in health and disease: A regulator of local complement activation.

作者信息

Borza Dorin-Bogdan

机构信息

Department of Microbiology and Immunology, Meharry Medical College, 1005 Dr. D. B. Todd, Jr., Blvd., Nashville, TN 37208, USA.

出版信息

Matrix Biol. 2017 Jan;57-58:299-310. doi: 10.1016/j.matbio.2016.09.002. Epub 2016 Sep 6.

Abstract

The glomerular basement membrane (GBM) is an essential component of the glomerular filtration barrier. Heparan sulfate proteoglycans such as agrin are major components of the GBM, along with α345(IV) collagen, laminin-521 and nidogen. A loss of GBM heparan sulfate chains is associated with proteinuria in several glomerular diseases and may contribute to the underlying pathology. As the major determinants of the anionic charge of the GBM, heparan sulfate chains have been thought to impart charge selectivity to the glomerular filtration, a view challenged by the negligible albuminuria in mice that lack heparan sulfate in the GBM. Recent studies provide increasing evidence that heparan sulfate chains modulate local complement activation by recruiting complement regulatory protein factor H, the major inhibitor of the alternative pathway in plasma. Factor H selectively inactivates C3b bound to surfaces bearing host-specific polyanions such as heparan sulfate, thus limiting complement activation on self surfaces such as the GBM, which are not protected by cell-bound complement regulators. We discuss mechanisms whereby the acquired loss of GBM heparan sulfate can impair the local regulation of the alternative pathway, exacerbating complement activation and glomerular injury in immune-mediated kidney diseases such as membranous nephropathy and lupus nephritis.

摘要

肾小球基底膜(GBM)是肾小球滤过屏障的重要组成部分。硫酸乙酰肝素蛋白聚糖(如集聚蛋白)是GBM的主要成分,此外还有α345(IV)胶原、层粘连蛋白-521和巢蛋白。在几种肾小球疾病中,GBM硫酸乙酰肝素链的缺失与蛋白尿有关,可能是潜在病理过程的原因之一。作为GBM阴离子电荷的主要决定因素,硫酸乙酰肝素链被认为赋予肾小球滤过电荷选择性,但这一观点受到了GBM中缺乏硫酸乙酰肝素的小鼠仅有微量蛋白尿这一现象的挑战。最近的研究提供了越来越多的证据表明,硫酸乙酰肝素链通过招募补体调节蛋白因子H来调节局部补体激活,因子H是血浆中替代途径的主要抑制剂。因子H选择性地使结合在带有宿主特异性多阴离子(如硫酸乙酰肝素)的表面上的C3b失活,从而限制在自身表面(如GBM)上的补体激活,而自身表面不受细胞结合补体调节因子的保护。我们讨论了GBM硫酸乙酰肝素的获得性缺失可能损害替代途径局部调节的机制,从而加剧免疫介导的肾脏疾病(如膜性肾病和狼疮性肾炎)中的补体激活和肾小球损伤。

相似文献

1
Glomerular basement membrane heparan sulfate in health and disease: A regulator of local complement activation.
Matrix Biol. 2017 Jan;57-58:299-310. doi: 10.1016/j.matbio.2016.09.002. Epub 2016 Sep 6.
2
Anti-heparan sulfate antibody and functional loss of glomerular heparan sulfate proteoglycans in lupus nephritis.
Lupus. 2017 Jul;26(8):815-824. doi: 10.1177/0961203316678674. Epub 2016 Dec 21.
3
Glomerular filtration is normal in the absence of both agrin and perlecan-heparan sulfate from the glomerular basement membrane.
Nephrol Dial Transplant. 2009 Jul;24(7):2044-51. doi: 10.1093/ndt/gfn758. Epub 2009 Jan 14.
4
The glomerular basement membrane as a barrier to albumin.
Nat Rev Nephrol. 2013 Aug;9(8):470-7. doi: 10.1038/nrneph.2013.109. Epub 2013 Jun 18.
6
Glomerular heparan sulfate alterations: mechanisms and relevance for proteinuria.
Kidney Int. 2000 Feb;57(2):385-400. doi: 10.1046/j.1523-1755.2000.00858.x.
7
The glomerular basement membrane.
Exp Cell Res. 2012 May 15;318(9):973-8. doi: 10.1016/j.yexcr.2012.02.031. Epub 2012 Mar 5.
8
Organogenesis of the kidney glomerulus: focus on the glomerular basement membrane.
Organogenesis. 2011 Apr-Jun;7(2):75-82. doi: 10.4161/org.7.2.15275. Epub 2011 Apr 1.
9
Inherited diseases of the glomerular basement membrane.
Nat Clin Pract Nephrol. 2008 Jan;4(1):24-37. doi: 10.1038/ncpneph0671.
10
Reduction of anionic sites in the glomerular basement membrane by heparanase does not lead to proteinuria.
Kidney Int. 2008 Feb;73(3):278-87. doi: 10.1038/sj.ki.5002706. Epub 2007 Nov 28.

引用本文的文献

1
Complement in anti-glomerular basement membrane glomerulonephritis.
Front Immunol. 2025 May 21;16:1442955. doi: 10.3389/fimmu.2025.1442955. eCollection 2025.
3
Studying biological events using biopolymeric matrices.
Biophys Rev. 2025 Mar 28;17(2):385-394. doi: 10.1007/s12551-025-01303-z. eCollection 2025 Apr.
5
6
Complement, Coagulation, and Fibrinolysis: The Role of the Endothelium and Its Glycocalyx Layer in Xenotransplantation.
Transpl Int. 2024 Oct 15;37:13473. doi: 10.3389/ti.2024.13473. eCollection 2024.
8
Association between circulatory complement activation and hypertensive renal damage: a case-control study.
Ren Fail. 2024 Dec;46(2):2365396. doi: 10.1080/0886022X.2024.2365396. Epub 2024 Jun 14.
9
Complement Activation in Nephrotic Glomerular Diseases.
Biomedicines. 2024 Feb 18;12(2):455. doi: 10.3390/biomedicines12020455.
10

本文引用的文献

2
Phospholipase A2 Receptor-Related Membranous Nephropathy and Mannan-Binding Lectin Deficiency.
J Am Soc Nephrol. 2016 Dec;27(12):3539-3544. doi: 10.1681/ASN.2015101155. Epub 2016 May 6.
3
Heparanase Is Essential for the Development of Acute Experimental Glomerulonephritis.
Am J Pathol. 2016 Apr;186(4):805-15. doi: 10.1016/j.ajpath.2015.12.008. Epub 2016 Feb 9.
4
Proteoglycan form and function: A comprehensive nomenclature of proteoglycans.
Matrix Biol. 2015 Mar;42:11-55. doi: 10.1016/j.matbio.2015.02.003. Epub 2015 Feb 18.
5
Complementing the Sugar Code: Role of GAGs and Sialic Acid in Complement Regulation.
Front Immunol. 2015 Feb 2;6:25. doi: 10.3389/fimmu.2015.00025. eCollection 2015.
6
Structural basis for sialic acid-mediated self-recognition by complement factor H.
Nat Chem Biol. 2015 Jan;11(1):77-82. doi: 10.1038/nchembio.1696. Epub 2014 Nov 24.
7
Thrombospondin type-1 domain-containing 7A in idiopathic membranous nephropathy.
N Engl J Med. 2014 Dec 11;371(24):2277-2287. doi: 10.1056/NEJMoa1409354. Epub 2014 Nov 13.
10
The proteoglycan glycomatrix: a sugar microenvironment essential for complement regulation.
Front Immunol. 2013 Nov 26;4:412. doi: 10.3389/fimmu.2013.00412.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验