Suppr超能文献

光诱导电泳在微流控系统中用于循环肿瘤细胞的纯化以进行基因表达分析-癌细胞系模型。

Application of optically-induced-dielectrophoresis in microfluidic system for purification of circulating tumour cells for gene expression analysis- Cancer cell line model.

机构信息

Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan City, 33302, Taiwan (R. O. C.).

Graduate Institute of Biochemical and Biomedical Engineering, Chang Gung University, Taoyuan City, 33302, Taiwan (R. O. C.).

出版信息

Sci Rep. 2016 Sep 9;6:32851. doi: 10.1038/srep32851.

Abstract

Circulating tumour cells (CTCs) in a blood circulation system are associated with cancer metastasis. The analysis of the drug-resistance gene expression of cancer patients' CTCs holds promise for selecting a more effective therapeutic regimen for an individual patient. However, the current CTC isolation schemes might not be able to harvest CTCs with sufficiently high purity for such applications. To address this issue, this study proposed to integrate the techniques of optically induced dielectrophoretic (ODEP) force-based cell manipulation and fluorescent microscopic imaging in a microfluidic system to further purify CTCs after the conventional CTC isolation methods. In this study, the microfluidic system was developed, and its optimal operating conditions and performance for CTC isolation were evaluated. The results revealed that the presented system was able to isolate CTCs with cell purity as high as 100%, beyond what is possible using the previously existing techniques. In the analysis of CTC gene expression, therefore, this method could exclude the interference of leukocytes in a cell sample and accordingly contribute to higher analytical sensitivity, as demonstrated in this study. Overall, this study has presented an ODEP-based microfluidic system capable of simply and effectively isolating a specific cell species from a cell mixture.

摘要

循环肿瘤细胞(CTCs)在血液循环系统中与癌症转移有关。分析癌症患者 CTCs 的耐药基因表达有望为个体患者选择更有效的治疗方案。然而,目前的 CTC 分离方案可能无法从 CTCs 中收获足够高纯度的 CTCs 用于此类应用。为了解决这个问题,本研究提出将基于光诱导介电泳(ODEP)力的细胞操作技术和荧光显微镜成像技术集成到微流控系统中,在常规 CTC 分离方法之后进一步纯化 CTCs。在本研究中,开发了微流控系统,并评估了其用于 CTC 分离的最佳操作条件和性能。结果表明,所提出的系统能够分离出纯度高达 100%的 CTCs,超过了以前存在的技术所能达到的水平。因此,在 CTC 基因表达分析中,该方法可以排除细胞样本中白细胞的干扰,从而提高分析灵敏度,正如本研究所示。总的来说,本研究提出了一种基于 ODEP 的微流控系统,能够简单有效地从细胞混合物中分离特定的细胞类型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d5b3/5016898/b6758396c6aa/srep32851-f1.jpg

相似文献

6
Two-stage microfluidic chip for selective isolation of circulating tumor cells (CTCs).
Biosens Bioelectron. 2015 May 15;67:86-92. doi: 10.1016/j.bios.2014.07.019. Epub 2014 Jul 14.
7
Microfluidic technologies.
Recent Results Cancer Res. 2012;195:59-67. doi: 10.1007/978-3-642-28160-0_5.
8
Microfluidic technologies for circulating tumor cell isolation.
Analyst. 2018 Jun 25;143(13):2936-2970. doi: 10.1039/c7an01979c.
10
High-purity capture of CTCs based on micro-beads enhanced isolation by size of epithelial tumor cells (ISET) method.
Biosens Bioelectron. 2018 Apr 15;102:157-163. doi: 10.1016/j.bios.2017.11.026. Epub 2017 Nov 7.

引用本文的文献

1
Optical tweezers in biomedical research - progress and techniques.
J Med Life. 2024 Nov;17(11):978-993. doi: 10.25122/jml-2024-0316.
2
Novel Isolating Approaches to Circulating Tumor Cell Enrichment Based on Microfluidics: A Review.
Micromachines (Basel). 2024 May 27;15(6):706. doi: 10.3390/mi15060706.
3
The integrated on-chip isolation and detection of circulating tumour cells.
Sens Diagn. 2024 Mar 26;3(4):562-584. doi: 10.1039/d3sd00302g. eCollection 2024 Apr 18.
6
Continuous Flow Separation of Live and Dead Cells Using Gravity Sedimentation.
Micromachines (Basel). 2023 Aug 8;14(8):1570. doi: 10.3390/mi14081570.
7
Resolution improvement of optoelectronic tweezers using patterned electrodes.
Appl Phys Lett. 2023 Jul 24;123(4):041104. doi: 10.1063/5.0160939. Epub 2023 Jul 25.
8
Liquid biopsy approaches and immunotherapy in colorectal cancer for precision medicine: Are we there yet?
Front Oncol. 2023 Jan 6;12:1023565. doi: 10.3389/fonc.2022.1023565. eCollection 2022.
9
Marker-free characterization of full-length transcriptomes of single live circulating tumor cells.
Genome Res. 2023 Jan;33(1):80-95. doi: 10.1101/gr.276600.122. Epub 2022 Nov 22.
10
On-chip dielectrophoretic recovery and detection of a lactate sensing probiotic from model human saliva.
Electrophoresis. 2023 Feb;44(3-4):442-449. doi: 10.1002/elps.202200214. Epub 2022 Dec 7.

本文引用的文献

2
Circulating tumor cell detection using a parallel flow micro-aperture chip system.
Lab Chip. 2015 Apr 7;15(7):1677-88. doi: 10.1039/c5lc00100e.
3
Nanostructure embedded microchips for detection, isolation, and characterization of circulating tumor cells.
Acc Chem Res. 2014 Oct 21;47(10):2941-50. doi: 10.1021/ar5001617. Epub 2014 Aug 11.
4
Two-stage microfluidic chip for selective isolation of circulating tumor cells (CTCs).
Biosens Bioelectron. 2015 May 15;67:86-92. doi: 10.1016/j.bios.2014.07.019. Epub 2014 Jul 14.
5
ERCC1-positive circulating tumor cells in the blood of ovarian cancer patients as a predictive biomarker for platinum resistance.
Clin Chem. 2014 Oct;60(10):1282-9. doi: 10.1373/clinchem.2014.224808. Epub 2014 Jul 11.
6
Circulating tumor cells and response to chemotherapy in metastatic breast cancer: SWOG S0500.
J Clin Oncol. 2014 Nov 1;32(31):3483-9. doi: 10.1200/JCO.2014.56.2561. Epub 2014 Jun 2.
7
Dielectrophoretic isolation and detection of cancer-related circulating cell-free DNA biomarkers from blood and plasma.
Electrophoresis. 2014 Jul;35(12-13):1828-36. doi: 10.1002/elps.201400016. Epub 2014 May 14.
9
CD133 expression in circulating tumor cells from breast cancer patients: potential role in resistance to chemotherapy.
Int J Cancer. 2013 Nov 15;133(10):2398-407. doi: 10.1002/ijc.28263. Epub 2013 Jul 6.
10
Inertial focusing for tumor antigen-dependent and -independent sorting of rare circulating tumor cells.
Sci Transl Med. 2013 Apr 3;5(179):179ra47. doi: 10.1126/scitranslmed.3005616.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验