Suppr超能文献

使用图案化电极提高光电镊子的分辨率

Resolution improvement of optoelectronic tweezers using patterned electrodes.

作者信息

Zaman Mohammad Asif, Wu Mo, Ren Wei, Jensen Michael A, Davis Ronald W, Hesselink Lambertus

机构信息

Department of Electrical Engineering, Stanford University, Stanford, California 94305, USA.

Department of Biochemistry, Stanford University, Stanford, California 94305, USA.

出版信息

Appl Phys Lett. 2023 Jul 24;123(4):041104. doi: 10.1063/5.0160939. Epub 2023 Jul 25.

Abstract

An optoelectronic tweezer (OET) device is presented that exhibits improved trapping resolution for a given optical spot size. The scheme utilizes a pair of patterned physical electrodes to produce an asymmetric electric field gradient. This, in turn, generates an azimuthal force component in addition to the conventional radial gradient force. Stable force equilibrium is achieved along a pair of antipodal points around the optical beam. Unlike conventional OETs where trapping can occur at any point around the beam perimeter, the proposed scheme improves the resolution by limiting trapping to two points. The working principle is analyzed by performing numerical analysis of the electromagnetic fields and corresponding forces. Experimental results are presented that show the trapping and manipulation of micro-particles using the proposed device.

摘要

本文介绍了一种光电子镊子(OET)装置,在给定光斑尺寸下,该装置具有更高的捕获分辨率。该方案利用一对图案化的物理电极产生不对称电场梯度。这反过来除了产生传统的径向梯度力之外,还会产生一个方位力分量。沿着光束周围的一对对映点实现稳定的力平衡。与传统的光电子镊子不同,传统光电子镊子在光束周边的任何点都可能发生捕获,而该方案通过将捕获限制在两个点来提高分辨率。通过对电磁场和相应力进行数值分析来分析其工作原理。给出了实验结果,展示了使用该装置对微粒的捕获和操控。

相似文献

1
Resolution improvement of optoelectronic tweezers using patterned electrodes.
Appl Phys Lett. 2023 Jul 24;123(4):041104. doi: 10.1063/5.0160939. Epub 2023 Jul 25.
3
Spectral tweezers: Single sample spectroscopy using optoelectronic tweezers.
Appl Phys Lett. 2024 Feb 12;124(7):071104. doi: 10.1063/5.0191871.
4
Parallel Manipulation and Flexible Assembly of Micro-Spiral Optoelectronic Tweezers.
Front Bioeng Biotechnol. 2022 Mar 21;10:868821. doi: 10.3389/fbioe.2022.868821. eCollection 2022.
5
Patterned Optoelectronic Tweezers: A New Scheme for Selecting, Moving, and Storing Dielectric Particles and Cells.
Small. 2018 Nov;14(45):e1803342. doi: 10.1002/smll.201803342. Epub 2018 Oct 11.
6
Manipulating and assembling metallic beads with Optoelectronic Tweezers.
Sci Rep. 2016 Sep 7;6:32840. doi: 10.1038/srep32840.
7
Operational Regimes and Physics Present in Optoelectronic Tweezers.
J Microelectromech Syst. 2008 Apr;17(2):342-350. doi: 10.1109/JMEMS.2008.916335.
8
Optothermal Manipulations of Colloidal Particles and Living Cells.
Acc Chem Res. 2018 Jun 19;51(6):1465-1474. doi: 10.1021/acs.accounts.8b00102. Epub 2018 May 25.
10
In-plane trapping and manipulation of ZnO nanowires by a hybrid plasmonic field.
Nanoscale. 2016 May 14;8(18):9756-63. doi: 10.1039/c5nr08940a. Epub 2016 Apr 27.

引用本文的文献

2
Impedance matching in optically induced dielectrophoresis: Effect of medium conductivity on trapping force.
Appl Phys Lett. 2024 Jul 29;125(5):051108. doi: 10.1063/5.0223354. Epub 2024 Aug 1.
3
Spectral tweezers: Single sample spectroscopy using optoelectronic tweezers.
Appl Phys Lett. 2024 Feb 12;124(7):071104. doi: 10.1063/5.0191871.
4
Microparticle electrical conductivity measurement using optoelectronic tweezers.
J Appl Phys. 2023 Sep 21;134(11):113104. doi: 10.1063/5.0169565. Epub 2023 Sep 19.

本文引用的文献

1
Dynamically controllable plasmonic tweezers using C-shaped nano-engravings.
Appl Phys Lett. 2022 Oct 31;121(18):181108. doi: 10.1063/5.0123268. Epub 2022 Nov 3.
2
Optoelectronic tweezers: a versatile toolbox for nano-/micro-manipulation.
Chem Soc Rev. 2022 Nov 14;51(22):9203-9242. doi: 10.1039/d2cs00359g.
3
Reconfigurable multi-component micromachines driven by optoelectronic tweezers.
Nat Commun. 2021 Sep 9;12(1):5349. doi: 10.1038/s41467-021-25582-8.
4
Plasmonic Optical Tweezers for Particle Manipulation: Principles, Methods, and Applications.
ACS Nano. 2021 Apr 27;15(4):6105-6128. doi: 10.1021/acsnano.1c00466. Epub 2021 Apr 9.
6
Escape from an Optoelectronic Tweezer Trap: experimental results and simulations.
Opt Express. 2018 Mar 5;26(5):5300-5309. doi: 10.1364/OE.26.005300.
8
Optical forces in hybrid plasmonic waveguides.
Nano Lett. 2011 Feb 9;11(2):321-8. doi: 10.1021/nl103070n. Epub 2011 Jan 13.
9
Review article-dielectrophoresis: status of the theory, technology, and applications.
Biomicrofluidics. 2010 Jun 29;4(2):022811. doi: 10.1063/1.3456626.
10
Theory of optical trapping by an optical vortex beam.
Phys Rev Lett. 2010 Mar 12;104(10):103601. doi: 10.1103/PhysRevLett.104.103601. Epub 2010 Mar 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验