Suppr超能文献

计算机辅助纹理分析与专家知识相结合:改善内镜下乳糜泻诊断

Computer-aided texture analysis combined with experts' knowledge: Improving endoscopic celiac disease diagnosis.

作者信息

Gadermayr Michael, Kogler Hubert, Karla Maximilian, Merhof Dorit, Uhl Andreas, Vécsei Andreas

机构信息

Michael Gadermayr, Dorit Merhof, Institute of Imaging and Computer Vision, RWTH Aachen University, D-52074 Aachen, Germany.

出版信息

World J Gastroenterol. 2016 Aug 21;22(31):7124-34. doi: 10.3748/wjg.v22.i31.7124.

Abstract

AIM

To further improve the endoscopic detection of intestinal mucosa alterations due to celiac disease (CD).

METHODS

We assessed a hybrid approach based on the integration of expert knowledge into the computer-based classification pipeline. A total of 2835 endoscopic images from the duodenum were recorded in 290 children using the modified immersion technique (MIT). These children underwent routine upper endoscopy for suspected CD or non-celiac upper abdominal symptoms between August 2008 and December 2014. Blinded to the clinical data and biopsy results, three medical experts visually classified each image as normal mucosa (Marsh-0) or villous atrophy (Marsh-3). The experts' decisions were further integrated into state-of-the-art texture recognition systems. Using the biopsy results as the reference standard, the classification accuracies of this hybrid approach were compared to the experts' diagnoses in 27 different settings.

RESULTS

Compared to the experts' diagnoses, in 24 of 27 classification settings (consisting of three imaging modalities, three endoscopists and three classification approaches), the best overall classification accuracies were obtained with the new hybrid approach. In 17 of 24 classification settings, the improvements achieved with the hybrid approach were statistically significant (P < 0.05). Using the hybrid approach classification accuracies between 94% and 100% were obtained. Whereas the improvements are only moderate in the case of the most experienced expert, the results of the less experienced expert could be improved significantly in 17 out of 18 classification settings. Furthermore, the lowest classification accuracy, based on the combination of one database and one specific expert, could be improved from 80% to 95% (P < 0.001).

CONCLUSION

The overall classification performance of medical experts, especially less experienced experts, can be boosted significantly by integrating expert knowledge into computer-aided diagnosis systems.

摘要

目的

进一步提高内镜对乳糜泻(CD)所致肠黏膜改变的检测能力。

方法

我们评估了一种基于将专家知识整合到计算机分类流程中的混合方法。采用改良浸入技术(MIT),在290名儿童中记录了总共2835张十二指肠内镜图像。这些儿童在2008年8月至2014年12月期间因疑似CD或非乳糜泻性上腹部症状接受了常规上消化道内镜检查。在对临床数据和活检结果不知情的情况下,三名医学专家将每张图像直观地分类为正常黏膜(马什0级)或绒毛萎缩(马什3级)。专家的判断进一步整合到先进的纹理识别系统中。以活检结果作为参考标准,在27种不同情况下将这种混合方法的分类准确率与专家诊断结果进行比较。

结果

与专家诊断相比,在27种分类情况中的24种(由三种成像模式、三名内镜医师和三种分类方法组成)下,新的混合方法获得了最佳的总体分类准确率。在24种分类情况中的17种情况下,混合方法所取得的改进具有统计学意义(P<0.05)。使用混合方法获得的分类准确率在94%至100%之间。虽然对于经验最丰富的专家而言改进幅度较小,但在18种分类情况中的17种情况下,经验较少的专家的结果得到了显著改善。此外,基于一个数据库和一名特定专家的组合的最低分类准确率可从80%提高到95%(P<0.001)。

结论

通过将专家知识整合到计算机辅助诊断系统中,医学专家的总体分类性能,尤其是经验较少的专家的性能,可以得到显著提高。

相似文献

1
Computer-aided texture analysis combined with experts' knowledge: Improving endoscopic celiac disease diagnosis.
World J Gastroenterol. 2016 Aug 21;22(31):7124-34. doi: 10.3748/wjg.v22.i31.7124.
2
Automated Marsh-like classification of celiac disease in children using local texture operators.
Comput Biol Med. 2011 Jun;41(6):313-25. doi: 10.1016/j.compbiomed.2011.03.009. Epub 2011 Apr 21.
5
Role of the "immersion technique" in diagnosing celiac disease with villous atrophy limited to the duodenal bulb.
J Clin Gastroenterol. 2007 Jul;41(6):571-5. doi: 10.1097/01.mcg.0000225625.99415.c0.
6
Quantitative assessment of endoscopic images for degree of villous atrophy in celiac disease.
Dig Dis Sci. 2011 Mar;56(3):805-11. doi: 10.1007/s10620-010-1371-6. Epub 2010 Sep 16.
7
Emerging technologies in upper gastrointestinal endoscopy and celiac disease.
Nat Clin Pract Gastroenterol Hepatol. 2009 Jan;6(1):47-56. doi: 10.1038/ncpgasthep1298. Epub 2008 Nov 11.
8
Automated classification of celiac disease during upper endoscopy: Status quo and quo vadis.
Comput Biol Med. 2018 Nov 1;102:221-226. doi: 10.1016/j.compbiomed.2018.04.020. Epub 2018 Apr 27.

引用本文的文献

2
Artificial intelligence in small intestinal diseases: Application and prospects.
World J Gastroenterol. 2021 Jul 7;27(25):3734-3747. doi: 10.3748/wjg.v27.i25.3734.
3
Current Evidence on Computer-Aided Diagnosis of Celiac Disease: Systematic Review.
Front Pharmacol. 2020 Apr 16;11:341. doi: 10.3389/fphar.2020.00341. eCollection 2020.
5
Coeliac disease and the videocapsule: what have we learned till now.
Ann Transl Med. 2017 May;5(9):197. doi: 10.21037/atm.2017.05.06.

本文引用的文献

1
Local fractal dimension based approaches for colonic polyp classification.
Med Image Anal. 2015 Dec;26(1):92-107. doi: 10.1016/j.media.2015.08.007. Epub 2015 Aug 29.
2
A scale- and orientation-adaptive extension of Local Binary Patterns for texture classification.
Pattern Recognit. 2015 Aug;48(8):2633-2644. doi: 10.1016/j.patcog.2015.02.024.
3
Survey on computer aided decision support for diagnosis of celiac disease.
Comput Biol Med. 2015 Oct 1;65:348-58. doi: 10.1016/j.compbiomed.2015.02.007. Epub 2015 Feb 23.
4
Do we need annotation experts? A case study in celiac disease classification.
Med Image Comput Comput Assist Interv. 2014;17(Pt 2):454-61. doi: 10.1007/978-3-319-10470-6_57.
5
Use of basis images for detection and classification of celiac disease.
Biomed Mater Eng. 2014;24(6):1913-23. doi: 10.3233/BME-141000.
6
Narrow band imaging combined with water immersion technique in the diagnosis of celiac disease.
Dig Liver Dis. 2014 Dec;46(12):1099-102. doi: 10.1016/j.dld.2014.08.039. Epub 2014 Sep 16.
7
Implementation of a polling protocol for predicting celiac disease in videocapsule analysis.
World J Gastrointest Endosc. 2013 Jul 16;5(7):313-22. doi: 10.4253/wjge.v5.i7.313.
8
Scale invariant texture descriptors for classifying celiac disease.
Med Image Anal. 2013 May;17(4):458-74. doi: 10.1016/j.media.2013.02.001. Epub 2013 Feb 13.
9
Endoscope distortion correction does not (easily) improve mucosa-based classification of celiac disease.
Med Image Comput Comput Assist Interv. 2012;15(Pt 3):574-81. doi: 10.1007/978-3-642-33454-2_71.
10
Computer-aided decision support systems for endoscopy in the gastrointestinal tract: a review.
IEEE Rev Biomed Eng. 2011;4:73-88. doi: 10.1109/RBME.2011.2175445.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验