Molder Adriana, Balaban Daniel Vasile, Jinga Mariana, Molder Cristian-Constantin
Carol Davila University of Medicine and Pharmacy, Bucharest, Romania.
Center of Excellence in Robotics and Autonomous Systems, Military Technical Academy Ferdinand I, Bucharest, Romania.
Front Pharmacol. 2020 Apr 16;11:341. doi: 10.3389/fphar.2020.00341. eCollection 2020.
Celiac disease (CD) is a chronic autoimmune disease that occurs in genetically predisposed individuals in whom the ingestion of gluten leads to damage of the small bowel. It is estimated to affect 1 in 100 people worldwide, but is severely underdiagnosed. Currently available guidelines require CD-specific serology and atrophic histology in duodenal biopsy samples for the diagnosis of adult CD. In pediatric CD, but in recent years in adults also, nonbioptic diagnostic strategies have become increasingly popular. In this setting, in order to increase the diagnostic rate of this pathology, endoscopy itself has been thought of as a case finding strategy by use of digital image processing techniques. Research focused on computer aided decision support used as database video capsule, endoscopy and even biopsy duodenal images. Early automated methods for diagnosis of celiac disease used feature extraction methods like spatial domain features, transform domain features, scale-invariant features and spatio-temporal features. Recent artificial intelligence (AI) techniques using deep learning (DL) methods such as convolutional neural network (CNN), support vector machines (SVM) or Bayesian inference have emerged as a breakthrough computer technology which can be used for computer aided diagnosis of celiac disease. In the current review we summarize methods used in clinical studies for classification of CD from feature extraction methods to AI techniques.
乳糜泻(CD)是一种慢性自身免疫性疾病,发生于具有遗传易感性的个体,摄入麸质会导致小肠损伤。据估计,全球每100人中就有1人受其影响,但该疾病严重漏诊。目前可用的指南要求十二指肠活检样本具备CD特异性血清学和萎缩性组织学表现以诊断成人CD。在儿童CD中,但近年来在成人中也是如此,非活检诊断策略越来越受欢迎。在这种情况下,为了提高这种疾病的诊断率,通过使用数字图像处理技术,内镜检查本身已被视为一种病例发现策略。研究集中于用作数据库的视频胶囊、内镜检查甚至十二指肠活检图像的计算机辅助决策支持。早期诊断乳糜泻的自动化方法使用诸如空间域特征、变换域特征、尺度不变特征和时空特征等特征提取方法。最近出现的使用深度学习(DL)方法如卷积神经网络(CNN)、支持向量机(SVM)或贝叶斯推理的人工智能(AI)技术,是一种突破性的计算机技术,可用于乳糜泻的计算机辅助诊断。在当前综述中,我们总结了临床研究中用于从特征提取方法到人工智能技术对CD进行分类的方法。