Suppr超能文献

通过汇聚性基因组生物标志物发现克服肿瘤异质性带来的治疗障碍:肾癌的辫状癌河模型

Overcome tumor heterogeneity-imposed therapeutic barriers through convergent genomic biomarker discovery: A braided cancer river model of kidney cancer.

作者信息

Hsieh James J, Manley Brandon J, Khan Nabeela, Gao JianJiong, Carlo Maria I, Cheng Emily H

机构信息

Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, United States.

Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, United States.

出版信息

Semin Cell Dev Biol. 2017 Apr;64:98-106. doi: 10.1016/j.semcdb.2016.09.002. Epub 2016 Sep 8.

Abstract

Tumor heterogeneity, encompassing genetic, epigenetic, and microenvironmental variables, is extremely complex and presents challenges to cancer diagnosis and therapy. Genomic efforts on genetic intratumor heterogeneity (G-ITH) confirm branched evolution, support the trunk-branch cancer model, and present a seemingly insurmountable obstacle to conquering cancers. G-ITH is conspicuous in clear cell renal cell carcinoma (ccRCC), where its presence complicates identification and validation of biomarkers and thwarts efforts in advancing precision cancer therapeutics. However, long-term clinical benefits on targeted therapy are not uncommon in metastatic ccRCC patients, implicating that there are underlying constraints during ccRCC evolution, which in turn force a nonrandom sequence of parallel gene/pathway/function/phenotype convergence within individual tumors. Accordingly, we proposed a "braided cancer river model" depicting ccRCC evolution, which deduces cancer development based on multiregion tumor genomics of exceptional mTOR inhibitor (mTORi) responders. Furthermore, we employ an outlier case to explore the river model and highlight the importance of "Five NGS Matters: Number, Frequency, Position, Site and Time" in assessing cancer genomics for precision medicine. This mutable cancer river model may capture clinically significant phenotype-convergent events, predict vulnerability/resistance mechanisms, and guide effective therapeutic strategies. Our model originates from studying exceptional responders in ccRCC, which warrants further refinement and future validation concerning its applicability to other cancer types. The goal of this review is employing kidney cancer as an example to illustrate critical issues concerning tumor heterogeneity.

摘要

肿瘤异质性涵盖遗传、表观遗传和微环境变量,极其复杂,给癌症诊断和治疗带来挑战。对肿瘤内遗传异质性(G-ITH)的基因组学研究证实了分支进化,支持主干-分支癌症模型,并给攻克癌症带来了似乎难以克服的障碍。G-ITH在透明细胞肾细胞癌(ccRCC)中很明显,其存在使生物标志物的识别和验证变得复杂,并阻碍了精准癌症治疗的进展。然而,转移性ccRCC患者接受靶向治疗获得长期临床益处的情况并不少见,这意味着ccRCC进化过程中存在潜在限制,这反过来又迫使个体肿瘤内的基因/通路/功能/表型以非随机顺序平行汇聚。因此,我们提出了一个描述ccRCC进化的“辫状癌河模型”,该模型基于对mTOR抑制剂(mTORi)的特殊反应者的多区域肿瘤基因组学推断癌症发展。此外,我们利用一个异常案例来探索该河模型,并强调“下一代测序的五个要点:数量、频率、位置、位点和时间”在评估癌症基因组学以实现精准医学方面的重要性。这个可变的癌河模型可能捕捉到具有临床意义的表型汇聚事件,预测易感性/抗性机制,并指导有效的治疗策略。我们的模型源于对ccRCC中特殊反应者的研究,其适用于其他癌症类型的适用性还有待进一步完善和未来验证。本综述的目的是以肾癌为例,说明与肿瘤异质性相关的关键问题。

相似文献

引用本文的文献

4
Mathematical and Machine Learning Models of Renal Cell Carcinoma: A Review.肾细胞癌的数学和机器学习模型:综述
Bioengineering (Basel). 2023 Nov 16;10(11):1320. doi: 10.3390/bioengineering10111320.

本文引用的文献

10
Metastasis as an evolutionary process.转移作为一个进化过程。
Science. 2016 Apr 8;352(6282):169-75. doi: 10.1126/science.aaf2784.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验