Division of Neurology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada; Division of Brain, Imaging and Behaviour - Systems Neuroscience, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada; Monash Alfred Psychiatry Research Centre, Monash University Central Clinical School and The Alfred, Melbourne, Victoria, Australia.
Division of Neurology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada; Division of Brain, Imaging and Behaviour - Systems Neuroscience, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.
Brain Stimul. 2017 Jan-Feb;10(1):83-90. doi: 10.1016/j.brs.2016.08.007. Epub 2016 Aug 12.
The mechanisms mediating the efficacy and variability of paired associative stimulation (PAS), thought to be mediated by Hebbian plasticity, remain incompletely understood. The magnitude and direction of Hebbian plasticity may be modulated by the level of neural depolarisation, which is influenced by stimulation intensity and interactions with cortical circuits.
PAS effects would be influenced by the intensity of transcranial magnetic stimulation (TMS) and interaction with other circuits. In particular, PAS would be inhibited by concurrent inhibitory input following median nerve stimulation, known as short latency afferent inhibition (SAI).
PAS was tested at an interstimulus interval (ISI) 2 ms or 6 ms longer than the N20 peak of the median nerve somatosensory-evoked potential (PAS, PAS). PAS was tested at three different TMS intensities. Short interval intracortical facilitation and inhibition were tested in the presence of SAI (SICF, SICI).
The propensity for long term potentiation like effects increased with higher PAS TMS stimulus intensity, whereas long term depression like effects ensued at subthreshold intensity. Stronger SAI correlated with weaker PAS LTP-like effects across individuals. PAS (maximal SAI) was less effective than PAS (weak SAI). SICF or SICI did not influence PAS response.
Inter-individual differences in SAI contribute to the variability in PAS efficacy. The magnitude and direction of PAS effects is modulated by TMS intensity. Together, these findings indicate that the level of neural activity induced by stimulation likely plays a crucial role in determining the direction and magnitude of Hebbian plastic effects evoked by PAS in human cortex.
介导配对相关刺激(PAS)疗效和可变性的机制被认为是由赫布可塑性介导的,但仍不完全清楚。赫布可塑性的幅度和方向可能会受到神经去极化水平的调节,而神经去极化水平受刺激强度和与皮质回路相互作用的影响。
PAS 效应会受到经颅磁刺激(TMS)强度和与其他回路相互作用的影响。特别是,PAS 会受到正中神经刺激后短潜伏期传入抑制(SAI)的抑制性输入的影响。
在正中神经体感诱发电位的 N20 峰后 2ms 或 6ms 的刺激间隔(ISI)下测试 PAS(PAS)。在三种不同的 TMS 强度下测试 PAS。在存在 SAI 的情况下测试短程皮质内易化和抑制(SICF、SICI)。
随着 PAS TMS 刺激强度的增加,长期增强样效应的趋势增加,而在阈下强度下则出现长期抑制样效应。个体间 SAI 越强,PAS 长期增强样效应越弱。PAS(最大 SAI)的效果不如 PAS(弱 SAI)。SICF 或 SICI 并不影响 PAS 反应。
SAI 的个体间差异导致 PAS 疗效的可变性。PAS 效应的幅度和方向受 TMS 强度的调节。这些发现表明,刺激引起的神经活动水平可能在决定人类皮质中 PAS 诱发的赫布可塑性效应的方向和幅度方面起着关键作用。