Lacroix Matthieu, Rodier Geneviève, Kirsh Olivier, Houles Thibault, Delpech Hélène, Seyran Berfin, Gayte Laurie, Casas Francois, Pessemesse Laurence, Heuillet Maud, Bellvert Floriant, Portais Jean-Charles, Berthet Charlene, Bernex Florence, Brivet Michele, Boutron Audrey, Le Cam Laurent, Sardet Claude
Institut de Recherche en Cancérologie de Montpellier, Montpellier F-34298, France; INSERM, U1194, Montpellier F-34298, France; Université Montpellier, Montpellier F-34090, France; Institut du Cancer Montpellier, Montpellier F-34298, France; Equipe labellisée Ligue Contre le Cancer, 75013 Paris, France;
Institut de Recherche en Cancérologie de Montpellier, Montpellier F-34298, France; INSERM, U1194, Montpellier F-34298, France; Université Montpellier, Montpellier F-34090, France; Institut du Cancer Montpellier, Montpellier F-34298, France; Equipe labellisée Ligue Contre le Cancer, 75013 Paris, France; Institut de Génétique Moléculaire de Montpellier, UMR5535, CNRS, Montpellier F-34293, France;
Proc Natl Acad Sci U S A. 2016 Sep 27;113(39):10998-1003. doi: 10.1073/pnas.1602754113. Epub 2016 Sep 12.
The mitochondrial pyruvate dehydrogenase (PDH) complex (PDC) acts as a central metabolic node that mediates pyruvate oxidation and fuels the tricarboxylic acid cycle to meet energy demand. Here, we reveal another level of regulation of the pyruvate oxidation pathway in mammals implicating the E4 transcription factor 1 (E4F1). E4F1 controls a set of four genes [dihydrolipoamide acetlytransferase (Dlat), dihydrolipoyl dehydrogenase (Dld), mitochondrial pyruvate carrier 1 (Mpc1), and solute carrier family 25 member 19 (Slc25a19)] involved in pyruvate oxidation and reported to be individually mutated in human metabolic syndromes. E4F1 dysfunction results in 80% decrease of PDH activity and alterations of pyruvate metabolism. Genetic inactivation of murine E4f1 in striated muscles results in viable animals that show low muscle PDH activity, severe endurance defects, and chronic lactic acidemia, recapitulating some clinical symptoms described in PDC-deficient patients. These phenotypes were attenuated by pharmacological stimulation of PDH or by a ketogenic diet, two treatments used for PDH deficiencies. Taken together, these data identify E4F1 as a master regulator of the PDC.
线粒体丙酮酸脱氢酶(PDH)复合物(PDC)作为一个核心代谢节点,介导丙酮酸氧化并为三羧酸循环提供燃料以满足能量需求。在此,我们揭示了哺乳动物丙酮酸氧化途径的另一层调控机制,涉及E4转录因子1(E4F1)。E4F1控制一组参与丙酮酸氧化的四个基因[二氢硫辛酰胺乙酰转移酶(Dlat)、二氢硫辛酰脱氢酶(Dld)、线粒体丙酮酸载体1(Mpc1)和溶质载体家族25成员19(Slc25a19)],并且据报道这些基因在人类代谢综合征中各自发生了突变。E4F1功能障碍导致PDH活性降低80%以及丙酮酸代谢改变。在横纹肌中对小鼠E4f1进行基因失活会产生存活的动物,这些动物表现出低肌肉PDH活性、严重的耐力缺陷和慢性乳酸血症,重现了PDC缺陷患者所描述的一些临床症状。这些表型通过PDH的药理刺激或生酮饮食得以减轻,这两种治疗方法用于治疗PDH缺乏症。综上所述,这些数据确定E4F1为PDC的主要调节因子。