Suppr超能文献

一种基于M-S4VMs训练的用于室内污染检测的电子鼻新型半监督方法。

A Novel Semi-Supervised Method of Electronic Nose for Indoor Pollution Detection Trained by M-S4VMs.

作者信息

Huang Tailai, Jia Pengfei, He Peilin, Duan Shukai, Yan Jia, Wang Lidan

机构信息

College of Electronic and Information Engineering, Southwest University, Chongqing 400715, China.

出版信息

Sensors (Basel). 2016 Sep 10;16(9):1462. doi: 10.3390/s16091462.

Abstract

Electronic nose (E-nose), as a device intended to detect odors or flavors, has been widely used in many fields. Many labeled samples are needed to gain an ideal E-nose classification model. However, the labeled samples are not easy to obtain and there are some cases where the gas samples in the real world are complex and unlabeled. As a result, it is necessary to make an E-nose that cannot only classify unlabeled samples, but also use these samples to modify its classification model. In this paper, we first introduce a semi-supervised learning algorithm called S4VMs and improve its use within a multi-classification algorithm to classify the samples for an E-nose. Then, we enhance its performance by adding the unlabeled samples that it has classified to modify its model and by using an optimization algorithm called quantum-behaved particle swarm optimization (QPSO) to find the optimal parameters for classification. The results of comparing this with other semi-supervised learning algorithms show that our multi-classification algorithm performs well in the classification system of an E-nose after learning from unlabeled samples.

摘要

电子鼻作为一种用于检测气味或风味的设备,已在许多领域得到广泛应用。为了获得理想的电子鼻分类模型,需要许多有标签的样本。然而,有标签的样本不易获取,而且在现实世界中存在一些气体样本复杂且无标签的情况。因此,有必要制造一种不仅能对无标签样本进行分类,还能利用这些样本修改其分类模型的电子鼻。在本文中,我们首先介绍一种名为S4VMs的半监督学习算法,并改进其在多分类算法中的应用,以对电子鼻的样本进行分类。然后,我们通过添加已分类的无标签样本以修改其模型,并使用一种名为量子行为粒子群优化(QPSO)的优化算法来寻找分类的最优参数,从而提高其性能。将其与其他半监督学习算法进行比较的结果表明,我们的多分类算法在从未标记样本学习后,在电子鼻分类系统中表现良好。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1a1d/5038740/a1128a9de3c9/sensors-16-01462-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验