Shanjani Yaser, Kang Yunqing, Zarnescu Livia, Ellerbee Bowden Audrey K, Koh Jeong-Tae, Ker Dai Fei Elmer, Yang Yunzhi
Department of Orthopedic Surgery, Stanford University, 300 Pasteur Drive, Stanford, CA 94305, USA.
Department of Bioengineering, Stanford University, 318 Campus Drive, Stanford, CA 94305, USA.
J Mech Behav Biomed Mater. 2017 Jan;65:356-372. doi: 10.1016/j.jmbbm.2016.08.037. Epub 2016 Sep 4.
Vascularization of tissue engineering constructs (TECs) in vitro is of critical importance for ensuring effective and satisfactory clinical outcomes upon implantation of TECs. Biomechanical properties of TECs have remarkable influence on the in vitro vascularization of TECs. This work utilized in vitro experiments and finite element analysis to investigate endothelial patterns in hybrid constructs of soft collagen gels and rigid macroporous poly(ε-caprolactone)-β-tricalcium phosphate (PCL-β-TCP) scaffold seeded/embedded with human umbilical vein endothelial cells (HUVECs) for bone tissue engineering applications. We first fabricated and characterized well-defined porous PCL-β-TCP scaffolds with identical pore size (500µm) but different strut sizes (200 and 400µm) using additive manufacturing (AM) technology, and then assessed the HUVEC׳s proliferation and morphogenesis within collagen, PCL-β-TCP scaffold, and the collagen-scaffold hybrid construct. Results showed that, in the hybrid construct, the cell population in the collagen component dropped by day 7 but then increased by day 14. Also, cells migrated onto the struts of the scaffold component, proliferated over time, and formed networks on the thinner struts (i.e., 200µm). Also, the thinner struts resulted in formation of long linear cellular cords structures within the pores. Finite element simulation demonstrated principal stress patterns similar to the observed cell-network pattern. It is probable that the scaffold component modulated patterns of principal stresses in the collagen component as biomechanical cues for reorganization of cell network patterns. Also, the scaffold component significantly improved the mechanical integrity of hydrogel component in the hybrid construct for weight-bearing applications. These results have collectively indicated that the manipulation of micro-architecture of scaffold could be an effective means to further regulate and guide desired cellular response in hybrid constructs.
组织工程构建体(TECs)的体外血管化对于确保TECs植入后获得有效且令人满意的临床结果至关重要。TECs的生物力学特性对其体外血管化有显著影响。本研究利用体外实验和有限元分析,研究了用于骨组织工程应用的、接种/包埋有人脐静脉内皮细胞(HUVECs)的软质胶原蛋白凝胶与硬质大孔聚(ε-己内酯)-β-磷酸三钙(PCL-β-TCP)支架的混合构建体中的内皮模式。我们首先使用增材制造(AM)技术制备并表征了孔径相同(500μm)但支柱尺寸不同(200和400μm)的明确多孔PCL-β-TCP支架,然后评估了HUVECs在胶原蛋白、PCL-β-TCP支架以及胶原蛋白-支架混合构建体中的增殖和形态发生。结果表明,在混合构建体中,胶原蛋白成分中的细胞数量在第7天下降,但在第14天增加。此外,细胞迁移到支架成分的支柱上,随时间增殖,并在较细的支柱(即200μm)上形成网络。而且,较细的支柱导致在孔隙内形成长线性细胞索结构。有限元模拟显示出与观察到的细胞网络模式相似的主应力模式。支架成分很可能调节了胶原蛋白成分中的主应力模式,作为细胞网络模式重组的生物力学线索。此外,支架成分显著提高了混合构建体中用于承重应用的水凝胶成分的机械完整性。这些结果共同表明,操纵支架的微观结构可能是进一步调节和引导混合构建体中所需细胞反应的有效手段。